
Structure of \[\text{ICl}_{\text{2}}^{\text{-}}\]is:
(a) Trigonal
(b) Octahedral
(c) Square planar
(d) Distorted trigonal pyramidal
Answer
133.2k+ views
Hint: Start the question by calculating hybridization of the given compound and find the geometry. From there, you can easily identify the structure of the compound. Keep note that the geometry and structure of the compound need not be the same.
Complete step by step solution:
Hybridization is defined as, “the concept of mixing atomic orbitals into new hybrid orbitals (with different energies, shapes, etc.) suitable for the pairing of electrons to form chemical bonds in valence bond theory”.
Let us define a term Z to calculate hybridisation. They can be related as –
The formula for Z is given as –
Z = \[\dfrac{1}{2}\left[ v\text{ }+\text{ }n\text{ }-\text{ }p\text{ }+m \right]\]
Where, v = Number of valence electrons on central atom
n = negative charge
p = positive charge
m = number of monovalent atoms (e.g. – H, F, Cl, Br)
In the case of \[\text{ICl}_{\text{2}}^{\text{-}}\], Iodine (I) the central metal atom and Chlorine (Cl) is the monovalent atom. Also, it is a negatively charged molecule (i.e. the net charge is -1).
Therefore,
\[\begin{align}
& Z=\dfrac{1}{2}(7+1+2) \\
& Z=5 \\
\end{align}\]
So, the hybridization of central atom in \[\text{ICl}_{\text{2}}^{\text{-}}\]is – \[s{{p}^{3}}d\]. Looking at the table drawn above, the geometry should be trigonal bipyramidal.
But since lone pairs of electrons are present at equatorial positions, the shape is distorted trigonal bipyramidal.
Therefore, the answer is – option (d)– Structure of \[\text{ICl}_{\text{2}}^{\text{-}}\]is distorted trigonal pyramidal.
Note: Geometry and shape are not the same. Geometry means the orientation of the molecules and electron pairs, whereas shape refers to the orientation of the atoms only.
Also, hybridization can also be calculated by the formula –
z = Number of sigma bond + Number of Lone Pairs in Central Metal atom
Complete step by step solution:
Hybridization is defined as, “the concept of mixing atomic orbitals into new hybrid orbitals (with different energies, shapes, etc.) suitable for the pairing of electrons to form chemical bonds in valence bond theory”.
Let us define a term Z to calculate hybridisation. They can be related as –
Z | Hybridization | Geometry |
2 | \[sp\] | Linear |
3 | \[s{{p}^{2}}\] | Trigonal planar |
4 | \[s{{p}^{3}}\] | Tetrahedral |
5 | \[s{{p}^{3}}d\] | Trigonal bipyramidal |
6 | \[s{{p}^{3}}{{d}^{2}}\] | Octahedral |
7 | \[s{{p}^{3}}{{d}^{3}}\] | Pentagonal bipyramidal |
The formula for Z is given as –
Z = \[\dfrac{1}{2}\left[ v\text{ }+\text{ }n\text{ }-\text{ }p\text{ }+m \right]\]
Where, v = Number of valence electrons on central atom
n = negative charge
p = positive charge
m = number of monovalent atoms (e.g. – H, F, Cl, Br)
In the case of \[\text{ICl}_{\text{2}}^{\text{-}}\], Iodine (I) the central metal atom and Chlorine (Cl) is the monovalent atom. Also, it is a negatively charged molecule (i.e. the net charge is -1).
Therefore,
\[\begin{align}
& Z=\dfrac{1}{2}(7+1+2) \\
& Z=5 \\
\end{align}\]
So, the hybridization of central atom in \[\text{ICl}_{\text{2}}^{\text{-}}\]is – \[s{{p}^{3}}d\]. Looking at the table drawn above, the geometry should be trigonal bipyramidal.
But since lone pairs of electrons are present at equatorial positions, the shape is distorted trigonal bipyramidal.
Therefore, the answer is – option (d)– Structure of \[\text{ICl}_{\text{2}}^{\text{-}}\]is distorted trigonal pyramidal.
Note: Geometry and shape are not the same. Geometry means the orientation of the molecules and electron pairs, whereas shape refers to the orientation of the atoms only.
Also, hybridization can also be calculated by the formula –
z = Number of sigma bond + Number of Lone Pairs in Central Metal atom
Recently Updated Pages
Sign up for JEE Main 2025 Live Classes - Vedantu

JEE Main Books 2023-24: Best JEE Main Books for Physics, Chemistry and Maths

JEE Main 2023 April 13 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 11 Shift 2 Question Paper with Answer Key

JEE Main 2023 April 10 Shift 2 Question Paper with Answer Key

JEE Main 2023 (April 6th Shift 2) Chemistry Question Paper with Answer Key

Trending doubts
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

Current Loop as Magnetic Dipole and Its Derivation for JEE

Inertial and Non-Inertial Frame of Reference - JEE Important Topic

JEE Main B.Arch Cut Off Percentile 2025

Inverse Trigonometric Functions in Maths

Huygens Principle

Other Pages
JEE Advanced 2024 Syllabus Weightage

Equilibrium Class 11 Notes: CBSE Chemistry Chapter 6

Which among the following is the softest metal A Platinum class 11 chemistry JEE_Main

CBSE Date Sheet 2025 Class 12 - Download Timetable PDF for FREE Now

JEE Main 2025 Session 2: Exam Date, Admit Card, Syllabus, & More

CBSE Class 10 Hindi Sample Papers 2024-25
