Temperature of the system decreases in an
(a) Adiabatic compression
(b) Isothermal compression
(c) Isothermal expansion
(d) Adiabatic expansion
Answer
Verified
122.7k+ views
Hint: In adiabatic processes, there is no flow of heat and mass in and out of the system. In the isothermal process, the temperature does not change, that is, it is kept constant.
Complete step by step solution: For solving this question, we will consider each option given in the question.
-Adiabatic compression process is the compression in which heat is not added or removed from a system and the internal energy of the system is increased and this is equal to the external work that is done on the system. So, there will be an increase in the temperature, but it does not escape the system. As this temperature increases, the pressure of the system will be more than the volume when adiabatic compression occurs.
-We know the isothermal process is the change in a system which occurs at a constant temperature. Here \[\Delta T\] is equal to zero. Isothermal compression is the compression occurring at a constant temperature. So, option (b) is incorrect, because in the question it is given that temperature decreases.
-Isothermal expansion is the expansion of a system at a constant temperature. In this also the temperature does not change. So option(c) is also incorrect.
-In adiabatic expansion is an ideal behaviour for a closed system. Here, there will be no flow of heat, but when the pressure is kept constant, the temperature decreases.
Thus, only in adiabatic processes, there is change in temperature. In adiabatic compression, temperature increases. In adiabatic expansion, temperature decreases. So, the correct option is (a).
Note: In compression, the volume of the system is decreased, so the pressure and temperature will increase, if there is no heat flow. In expansion, the volume decreases, so pressure and temperature decrease.
Complete step by step solution: For solving this question, we will consider each option given in the question.
-Adiabatic compression process is the compression in which heat is not added or removed from a system and the internal energy of the system is increased and this is equal to the external work that is done on the system. So, there will be an increase in the temperature, but it does not escape the system. As this temperature increases, the pressure of the system will be more than the volume when adiabatic compression occurs.
-We know the isothermal process is the change in a system which occurs at a constant temperature. Here \[\Delta T\] is equal to zero. Isothermal compression is the compression occurring at a constant temperature. So, option (b) is incorrect, because in the question it is given that temperature decreases.
-Isothermal expansion is the expansion of a system at a constant temperature. In this also the temperature does not change. So option(c) is also incorrect.
-In adiabatic expansion is an ideal behaviour for a closed system. Here, there will be no flow of heat, but when the pressure is kept constant, the temperature decreases.
Thus, only in adiabatic processes, there is change in temperature. In adiabatic compression, temperature increases. In adiabatic expansion, temperature decreases. So, the correct option is (a).
Note: In compression, the volume of the system is decreased, so the pressure and temperature will increase, if there is no heat flow. In expansion, the volume decreases, so pressure and temperature decrease.
Recently Updated Pages
The hybridization and shape of NH2 ion are a sp2 and class 11 chemistry JEE_Main
Total number of orbitals associated with the 3rd shell class 11 chemistry JEE_Main
Which of the following has the lowest boiling point class 11 chemistry JEE_Main
Which of the following compounds has zero dipole moment class 11 chemistry JEE_Main
Number of g of oxygen in 322 g Na2SO410H2O is Molwt class 11 chemistry JEE_Main
In the neutralization process of H3PO4 and NaOH the class 11 chemistry JEE_Main
Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility & More
JEE Main Login 2045: Step-by-Step Instructions and Details
JEE Main Chemistry Question Paper with Answer Keys and Solutions
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking
JEE Main 2023 January 24 Shift 2 Question Paper with Answer Keys & Solutions
JEE Main Chemistry Exam Pattern 2025
Other Pages
NCERT Solutions for Class 11 Chemistry Chapter 7 Redox Reaction
NCERT Solutions for Class 11 Chemistry Chapter 5 Thermodynamics
NCERT Solutions for Class 11 Chemistry Chapter 8 Organic Chemistry
NCERT Solutions for Class 11 Chemistry Chapter 6 Equilibrium
NCERT Solutions for Class 11 Chemistry Chapter 9 Hydrocarbons
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs