The acceleration due to gravity g and density of the earth P are related by which of the following relations? (Here G is the gravitational constant and R is the radius of the earth).
(A) \[p = \dfrac{{4\pi }}{{3GRd}}\]
(B) \[p = \dfrac{{3g}}{{4\pi GR}}\]
(C) \[p = \dfrac{{3G}}{{4\pi GR}}\]
(D) \[p = \dfrac{{4\pi GR}}{{3G}}\]
Answer
Verified
118.8k+ views
Hint Write down the equation for acceleration due to gravity. Rearrange the equation and find the formula for mass. Then calculate the volume of earth. Finally substitute, mass and volume in the equation which states that the ratio of mass to volume gives us density.
Complete step-by-step solution
Acceleration due to gravity on earth is given as,
\[g = \dfrac{{GM}}{{{R^2}}}\,\,\, \ldots (1)\]
Where, g: Acceleration due to gravity
G: Gravitational constant
M: Mass of earth
R: Radius of earth
Now we know, density is given as,
\[density = \dfrac{{mass}}{{volume}}\]
\[\therefore p = \dfrac{M}{V}\,\,\, \ldots (2)\]
Volume of Earth is
\[V = \dfrac{4}{3}\pi {R^3}\,\, \ldots (3)\]
Now, rearranging equation.(1) gives us,
\[{\text{M = }}\dfrac{{{\text{g}}{{\text{R}}^{\text{2}}}}}{{\text{G}}}\,\,\,{\ldots (4)}\]
By substituting equation.(3) and equation.(4) in equation.(2) we get,
$p=\dfrac{{{\text{g}}{{\text{R}}^{\text{2}}}}}{ \dfrac{4}{3}\pi {R^3}}$
\[\therefore {\text{p = }}\dfrac{{{\text{3g}}}}{{{\text{4}\pi \text{GR}}}}\]
So, the relation between density and acceleration due to gravity is given as \[p = \dfrac{{3g}}{{4\pi GR}}\].
Acceleration due to gravity is proportional to mean density of earth and its radius.
Hence, the correct answer is option (B).
Additional Information
Equation of gravitational constant and acceleration due to gravity can be calculated as shown below:
Suppose, a body of mass m is placed on the surface of earth and assumes the shape of the earth to be round. If mass of the earth is M and radius of earth is R, then by Newton’s law of gravitation we get,
\[{\text{F = G}}\dfrac{{{\text{Mm}}}}{{{{\text{R}}^{\text{2}}}}}\,\,{ \ldots (1)}\]
Now, from Newton’s Second law of motion,
\[{\text{F = mg}}\,\,{ \ldots (2)}\]
From equation.(1) and equation.(2) we get,
\[{\text{mg = G}}\dfrac{{{\text{Mm}}}}{{{{\text{R}}^{\text{2}}}}}\]
\[\therefore {\text{g = }}\dfrac{{{\text{GM}}}}{{{{\text{R}}^{\text{2}}}}}\,\,\]
Note This expression can also be used at and within the earth at distance R from the centre of the earth. Generally, we use P (rho) as the symbol for density but in this question it is denoted by symbol p. So don’t get confused by the initialization. Solve the question using the initials mentioned in the question.
Complete step-by-step solution
Acceleration due to gravity on earth is given as,
\[g = \dfrac{{GM}}{{{R^2}}}\,\,\, \ldots (1)\]
Where, g: Acceleration due to gravity
G: Gravitational constant
M: Mass of earth
R: Radius of earth
Now we know, density is given as,
\[density = \dfrac{{mass}}{{volume}}\]
\[\therefore p = \dfrac{M}{V}\,\,\, \ldots (2)\]
Volume of Earth is
\[V = \dfrac{4}{3}\pi {R^3}\,\, \ldots (3)\]
Now, rearranging equation.(1) gives us,
\[{\text{M = }}\dfrac{{{\text{g}}{{\text{R}}^{\text{2}}}}}{{\text{G}}}\,\,\,{\ldots (4)}\]
By substituting equation.(3) and equation.(4) in equation.(2) we get,
$p=\dfrac{{{\text{g}}{{\text{R}}^{\text{2}}}}}{ \dfrac{4}{3}\pi {R^3}}$
\[\therefore {\text{p = }}\dfrac{{{\text{3g}}}}{{{\text{4}\pi \text{GR}}}}\]
So, the relation between density and acceleration due to gravity is given as \[p = \dfrac{{3g}}{{4\pi GR}}\].
Acceleration due to gravity is proportional to mean density of earth and its radius.
Hence, the correct answer is option (B).
Additional Information
Equation of gravitational constant and acceleration due to gravity can be calculated as shown below:
Suppose, a body of mass m is placed on the surface of earth and assumes the shape of the earth to be round. If mass of the earth is M and radius of earth is R, then by Newton’s law of gravitation we get,
\[{\text{F = G}}\dfrac{{{\text{Mm}}}}{{{{\text{R}}^{\text{2}}}}}\,\,{ \ldots (1)}\]
Now, from Newton’s Second law of motion,
\[{\text{F = mg}}\,\,{ \ldots (2)}\]
From equation.(1) and equation.(2) we get,
\[{\text{mg = G}}\dfrac{{{\text{Mm}}}}{{{{\text{R}}^{\text{2}}}}}\]
\[\therefore {\text{g = }}\dfrac{{{\text{GM}}}}{{{{\text{R}}^{\text{2}}}}}\,\,\]
Note This expression can also be used at and within the earth at distance R from the centre of the earth. Generally, we use P (rho) as the symbol for density but in this question it is denoted by symbol p. So don’t get confused by the initialization. Solve the question using the initials mentioned in the question.
Recently Updated Pages
JEE Main 2025: Application Form, Exam Dates, Eligibility, and More
NTA JEE Mains 2025 Correction window - Dates and Procedure
A steel rail of length 5m and area of cross section class 11 physics JEE_Main
At which height is gravity zero class 11 physics JEE_Main
A nucleus of mass m + Delta m is at rest and decays class 11 physics JEE_MAIN
A wave is travelling along a string At an instant the class 11 physics JEE_Main
Trending doubts
Free Radical Substitution Mechanism of Alkanes for JEE Main 2025
Electron Gain Enthalpy and Electron Affinity for JEE
Collision - Important Concepts and Tips for JEE
JEE Main Chemistry Exam Pattern 2025
The diagram given shows how the net interaction force class 11 physics JEE_Main
An Lshaped glass tube is just immersed in flowing water class 11 physics JEE_Main
Other Pages
NCERT Solutions for Class 11 Physics Chapter 4 Laws of Motion
NCERT Solutions for Class 11 Physics Chapter 3 Motion In A Plane
NCERT Solutions for Class 11 Physics Chapter 13 Oscillations
Find the current in wire AB class 11 physics JEE_Main
JEE Main 2023 January 25 Shift 1 Question Paper with Answer Keys & Solutions
Thermodynamics Class 11 Notes CBSE Physics Chapter 11 (Free PDF Download)