
The acceleration of a particle is increasing linearly with time $t$ as \[bt\]. The particle starts from the origin with an initial velocity ${V_0}$. The distance travelled by the particle in time $t$ will be _____?
Answer
133.2k+ views
Hint: If the acceleration of the particle changes with the flow of time, in that case the acceleration of the particle is a complex motion and the particle's acceleration is difficult to analyze. But if the acceleration of a particle is increasing linearly with time then the relation of particle's velocity, acceleration and displacement would be easy to explain numerically.
Formula Used:
\[a = \dfrac{v}{t}\]
$v = \dfrac{s}{t}$
Where,
$a$: acceleration, $v$: velocity, $s$: displacement, $t$: time.
Formula of Integration:- $\int {{x^n}} dx$
$ = \dfrac{{{x^{n + 1}}}}{{n + 1}} + c$
Where $c$ is constant of integration, whose value can be anything.
Complete step by step answer:
$a = \dfrac{v}{t} = \dfrac{{dv}}{{dt}}$
Because the acceleration of a particle is increasing linearly with time, so:-
$a = bt$
Integrate this and we get $v$,
$\int {bt} $
$\Rightarrow$ $ = \int {\dfrac{{b{t^{1 + 1}}}}{{1 + 1}}} $
$\Rightarrow$ $v = \dfrac{{b{t^2}}}{2} + c$
The particle starts from the origin with an initial velocity ${V_0}$, so:-
${V_0} = c$
$\Rightarrow$ $v = \dfrac{{b{t^2}}}{2} + {V_0}$
$\Rightarrow$ $v = \dfrac{s}{t} = \dfrac{{ds}}{{dt}}$
$\dfrac{{ds}}{{dt}} = \dfrac{{b{t^2}}}{2} + {V_0}$
$\Rightarrow$ $ds = (\dfrac{{b{t^2}}}{2} + {V_0})dt$
Integrating the equation we get:-
$\Rightarrow$ $ds = (\dfrac{1}{2}\int {\dfrac{{b{t^{2 + 1}}}}{{2 + 1}} + \int {{V_0}} )} $
$\Rightarrow$ $s = (\dfrac{1}{6}b{t^3} + {V_0}t) + c$ and $c = 0$
Hence, $s = \dfrac{{b{t^3}}}{6} + {V_0}t$
Note: When the particle changes his velocity in between time-period is called acceleration of the particle. Acceleration is a vector quantity that is defined as the rate at which an object changes its velocity. An object is accelerating if it is changing its velocity.
Formula Used:
\[a = \dfrac{v}{t}\]
$v = \dfrac{s}{t}$
Where,
$a$: acceleration, $v$: velocity, $s$: displacement, $t$: time.
Formula of Integration:- $\int {{x^n}} dx$
$ = \dfrac{{{x^{n + 1}}}}{{n + 1}} + c$
Where $c$ is constant of integration, whose value can be anything.
Complete step by step answer:
$a = \dfrac{v}{t} = \dfrac{{dv}}{{dt}}$
Because the acceleration of a particle is increasing linearly with time, so:-
$a = bt$
Integrate this and we get $v$,
$\int {bt} $
$\Rightarrow$ $ = \int {\dfrac{{b{t^{1 + 1}}}}{{1 + 1}}} $
$\Rightarrow$ $v = \dfrac{{b{t^2}}}{2} + c$
The particle starts from the origin with an initial velocity ${V_0}$, so:-
${V_0} = c$
$\Rightarrow$ $v = \dfrac{{b{t^2}}}{2} + {V_0}$
$\Rightarrow$ $v = \dfrac{s}{t} = \dfrac{{ds}}{{dt}}$
$\dfrac{{ds}}{{dt}} = \dfrac{{b{t^2}}}{2} + {V_0}$
$\Rightarrow$ $ds = (\dfrac{{b{t^2}}}{2} + {V_0})dt$
Integrating the equation we get:-
$\Rightarrow$ $ds = (\dfrac{1}{2}\int {\dfrac{{b{t^{2 + 1}}}}{{2 + 1}} + \int {{V_0}} )} $
$\Rightarrow$ $s = (\dfrac{1}{6}b{t^3} + {V_0}t) + c$ and $c = 0$
Hence, $s = \dfrac{{b{t^3}}}{6} + {V_0}t$
Note: When the particle changes his velocity in between time-period is called acceleration of the particle. Acceleration is a vector quantity that is defined as the rate at which an object changes its velocity. An object is accelerating if it is changing its velocity.
Recently Updated Pages
Sign up for JEE Main 2025 Live Classes - Vedantu

JEE Main Books 2023-24: Best JEE Main Books for Physics, Chemistry and Maths

JEE Main 2023 April 13 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 11 Shift 2 Question Paper with Answer Key

JEE Main 2023 April 10 Shift 2 Question Paper with Answer Key

JEE Main 2023 (April 11th Shift 2) Physics Question Paper with Answer Key

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility & More

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Class 11 JEE Main Physics Mock Test 2025

Current Loop as Magnetic Dipole and Its Derivation for JEE

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units and Measurements Class 11 Notes: CBSE Physics Chapter 1

NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line

Important Questions for CBSE Class 11 Physics Chapter 1 - Units and Measurement

Motion In A Plane: Line Class 11 Notes: CBSE Physics Chapter 3

Waves Class 11 Notes: CBSE Physics Chapter 14
