The amplitude of simple harmonic motion represented by the displacement equation $y\left( {cm} \right) = 4\left( {\operatorname{Sin} \,5\pi t + \sqrt 2 \cos \,5\pi t} \right)$is:
A. $4\,cm$
B. $4\sqrt 2 \,cm$
C. $4\sqrt {3\,} cm$
D. \[4\left( {\sqrt 2 - 1} \right)\,cm\]
Answer
Verified
116.7k+ views
Hint: In the question, we have to determine the amplitude of the simple harmonic motion. The simple harmonic motion is represented by the displacement equation $y\left( {cm} \right) = 4\left( {\operatorname{Sin} \,5\pi t + \sqrt 2 \cos \,5\pi t} \right)$. For the simple harmonic motion, we will compare the given expression with the general equation of the simple harmonic motion and then we get the value of the amplitude of the simple harmonic motion.
Complete step by step answer:
Given that the equation of the simple harmonic motion
$y\left( {cm} \right) = 4\left( {\operatorname{Sin} \,5\pi t + \sqrt 2 \cos \,5\pi t} \right)$
Where,
$y$be the displacement in the simple harmonic motion.
The simple harmonic motion can be written as,
$y\left( {cm} \right) = 4\operatorname{Sin} \,5\pi t + 4\sqrt 2 \cos \,5\pi t..........\left( 1 \right)$
We know that the general equation of the simple harmonic equation is given by the formula,
$y\left( {cm} \right) = A\operatorname{Sin} \,\left( {\omega t} \right) + B\,\cos \,\left( {\omega t} \right)..........\left( 2 \right)$
Comparing the above given two equations, we get the values of the parameters of the simple harmonic motion, we get
$A = 4$
$B = 4\sqrt 2 $
Now, we also know that the amplitude for a simple harmonic equation is given as
${\text{Amplitude}}\,{\text{ = }}\,\sqrt {{A^2} + {B^2}} $
Now, we substitute the values of A and B in the above amplitude expression, we get
${\text{Amplitude}}\,{\text{ = }}\,\sqrt {{{\left( 4 \right)}^2} + {{\left( {4\sqrt 2 } \right)}^2}} $
Performing the arithmetic operations in the above equation, we get
${\text{Amplitude}}\,{\text{ = }}\,\sqrt {16 + 32} $
${\text{Amplitude}}\,{\text{ = }}\,\sqrt {48} $
Simplify the equation of the amplitude, we get
${\text{Amplitude}}\,{\text{ = }}\,4\sqrt 3 $
Therefore, the amplitude of the simple harmonic equation is $4\sqrt 3 $.
Hence, from the above options, option C is correct.
Note: A special type of the periodic motion where the restoring force of the moving object is directly proportional to its magnitude of the displacement and which is acting towards the objects equilibrium position is called the simple harmonic motion.
Complete step by step answer:
Given that the equation of the simple harmonic motion
$y\left( {cm} \right) = 4\left( {\operatorname{Sin} \,5\pi t + \sqrt 2 \cos \,5\pi t} \right)$
Where,
$y$be the displacement in the simple harmonic motion.
The simple harmonic motion can be written as,
$y\left( {cm} \right) = 4\operatorname{Sin} \,5\pi t + 4\sqrt 2 \cos \,5\pi t..........\left( 1 \right)$
We know that the general equation of the simple harmonic equation is given by the formula,
$y\left( {cm} \right) = A\operatorname{Sin} \,\left( {\omega t} \right) + B\,\cos \,\left( {\omega t} \right)..........\left( 2 \right)$
Comparing the above given two equations, we get the values of the parameters of the simple harmonic motion, we get
$A = 4$
$B = 4\sqrt 2 $
Now, we also know that the amplitude for a simple harmonic equation is given as
${\text{Amplitude}}\,{\text{ = }}\,\sqrt {{A^2} + {B^2}} $
Now, we substitute the values of A and B in the above amplitude expression, we get
${\text{Amplitude}}\,{\text{ = }}\,\sqrt {{{\left( 4 \right)}^2} + {{\left( {4\sqrt 2 } \right)}^2}} $
Performing the arithmetic operations in the above equation, we get
${\text{Amplitude}}\,{\text{ = }}\,\sqrt {16 + 32} $
${\text{Amplitude}}\,{\text{ = }}\,\sqrt {48} $
Simplify the equation of the amplitude, we get
${\text{Amplitude}}\,{\text{ = }}\,4\sqrt 3 $
Therefore, the amplitude of the simple harmonic equation is $4\sqrt 3 $.
Hence, from the above options, option C is correct.
Note: A special type of the periodic motion where the restoring force of the moving object is directly proportional to its magnitude of the displacement and which is acting towards the objects equilibrium position is called the simple harmonic motion.
Recently Updated Pages
Uniform Acceleration - Definition, Equation, Examples, and FAQs
How to find Oxidation Number - Important Concepts for JEE
How Electromagnetic Waves are Formed - Important Concepts for JEE
Electrical Resistance - Important Concepts and Tips for JEE
Average Atomic Mass - Important Concepts and Tips for JEE
Chemical Equation - Important Concepts and Tips for JEE
Trending doubts
Physics Average Value and RMS Value JEE Main 2025
Inductive Effect and Acidic Strength - Types, Relation and Applications for JEE
Which of the following is the smallest unit of length class 11 physics JEE_Main
Clemmenson and Wolff Kishner Reductions for JEE
JEE Main 2023 January 24 Shift 2 Question Paper with Answer Keys & Solutions
JEE Main Physics Online Mock Test for Class 12
Other Pages
NCERT Solutions for Class 11 Physics Chapter 8 Mechanical Properties of Solids
Thermodynamics Class 11 Notes CBSE Physics Chapter 11 (Free PDF Download)
NCERT Solutions for Class 11 Physics Chapter 5 Work Energy and Power
Mechanical Properties of Fluids Class 11 Notes CBSE Physics Chapter 9 (Free PDF Download)
JEE Advanced 2025 Revision Notes for Practical Organic Chemistry
Collision - Important Concepts and Tips for JEE