Answer
Verified
112.5k+ views
Hint We know that deviation of prism is given by $\delta = i + e - A$, where $\delta $ is deviation, $i$ is angle of incidence, $e$ is angle of emergence and $A$ is angle of prism. For minimum deviation, $i = e$. Using these equations, we find the angle of the prism. Using minimum deviation, we find a refractive index of prism. After this, find ${i_1}$ using the given information.
Complete step by step solution
We know that deviation of prism is given by $\delta = i + e - A$, where $\delta $ is deviation, $i$ is angle of incidence, $e$ is angle of emergence and $A$ is angle of prism. For minimum deviation, $i = e$.
From the figure, for minimum deviation, $\delta = {60^0}$ and also ${i_1} = {60^0}$.
For minimum deviation, $\delta = 2i - A$ or $A = 2i - \delta $.
After putting value in above equation, we get
$A = 2 \times 60 - 60 = {60^0}$.
Now refractive of given is given by
$n = \dfrac{{\sin \left( {\dfrac{{A + \delta }}{2}} \right)}}{{\sin \dfrac{A}{2}}}$
Then, $n = \dfrac{{\sin 60}}{{\sin 30}} = \sqrt 3 $.
Here for angle of deviation ${65^0}$, angle of emergence is given in figure that is $e = {70^0}$,
Then, ${\delta _1} = {i_1} + e - A$ or ${i_1} = {\delta _1} - e + A$
${i_1} = 65 - 70 + 60 = {55^0}$.
From the graph we can see that the curve of $\delta {\text{ vs }}i$ is parabolic.
Hence all options are correct.
Note We know that of each angle of deviation there are two points on the graph, these two are angle of incidence and angle of emergence and always exist in pairs. These angles are such that if we take angle of emergence as angle of incidence the angle of emergence for that case is angle of incident of given case.
Complete step by step solution
We know that deviation of prism is given by $\delta = i + e - A$, where $\delta $ is deviation, $i$ is angle of incidence, $e$ is angle of emergence and $A$ is angle of prism. For minimum deviation, $i = e$.
From the figure, for minimum deviation, $\delta = {60^0}$ and also ${i_1} = {60^0}$.
For minimum deviation, $\delta = 2i - A$ or $A = 2i - \delta $.
After putting value in above equation, we get
$A = 2 \times 60 - 60 = {60^0}$.
Now refractive of given is given by
$n = \dfrac{{\sin \left( {\dfrac{{A + \delta }}{2}} \right)}}{{\sin \dfrac{A}{2}}}$
Then, $n = \dfrac{{\sin 60}}{{\sin 30}} = \sqrt 3 $.
Here for angle of deviation ${65^0}$, angle of emergence is given in figure that is $e = {70^0}$,
Then, ${\delta _1} = {i_1} + e - A$ or ${i_1} = {\delta _1} - e + A$
${i_1} = 65 - 70 + 60 = {55^0}$.
From the graph we can see that the curve of $\delta {\text{ vs }}i$ is parabolic.
Hence all options are correct.
Note We know that of each angle of deviation there are two points on the graph, these two are angle of incidence and angle of emergence and always exist in pairs. These angles are such that if we take angle of emergence as angle of incidence the angle of emergence for that case is angle of incident of given case.
Recently Updated Pages
Updated JEE Main Syllabus 2025 - Subject-wise Syllabus and More
JEE Main 2025 Exam Date: Check Important Dates and Schedule
JEE Main Admit Card 2025 Release Date and Time with Steps to Download
JEE Main 2025 City Intimation Slip: Downloading Link and Exam Centres
Uniform Acceleration - Definition, Equation, Examples, and FAQs
JEE Main 2021 July 25 Shift 2 Question Paper with Answer Key
Trending doubts
JEE Main 2025: Application Form (Out), Exam Dates (Released), Eligibility & More
JEE Main Chemistry Question Paper with Answer Keys and Solutions
Angle of Deviation in Prism - Important Formula with Solved Problems for JEE
Average and RMS Value for JEE Main
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
Degree of Dissociation and Its Formula With Solved Example for JEE
Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs
Dual Nature of Radiation and Matter Class 12 Notes CBSE Physics Chapter 11 (Free PDF Download)
Diffraction of Light - Young’s Single Slit Experiment
JEE Main 2025: Derivation of Equation of Trajectory in Physics
Inductive Effect and Acidic Strength - Types, Relation and Applications for JEE
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking