The atomic radii of fluorine and neon in angstrom unit are respectively given by:
A.0.75, 1.60
B.1.60, 1.60
C.0.72, 0.72
D.1.60, 0.72
Answer
Verified
124.8k+ views
Hint:The atomic radii of an element is completely depending upon the electronic configuration of the element. As we know the electronic configuration of the given element, we can check the orbital occupancy of the electron as well as the radius measurement condition of the given element by which the answer can be given.
Complete step by step answer:
The atomic number of fluorine is 9 and neon is 10.
The electronic configuration of fluorine (Group-17 element: Halogen) is
The electronic configuration of neon (Group-18 element: Inert gas) is
Thus, we can clearly see fluorine has 5 electrons in 2p orbital. To form an ideal configuration the p orbital should be filled with 6 electrons. In fluorine one electron is less.
Hence, the nuclear charge is high in case of fluorine that leads to the smaller size of fluorine than that of the next inert gas neon.
According to the given options, only option A shows the smaller atomic radius of fluorine than the neon.
The atomic radius of fluorine and neon is 0.75 angstrom and 1.60 angstrom respectively.
So, option A. 0.75, 1.60 is the correct answer.
Note:
In other words, the atomic radius of fluorine is measured by its covalent radius and in case neon the atomic radius is measured by the van der Waals radius. As, the van der Waals radius is always greater than covalent radius, so the fluorine has a smaller radius than neon. Among the four option, only option-A satisfy the condition of $\text{radiu}{{\text{s}}_{\text{vanderWaals}}}$>$\text{radiu}{{\text{s}}_{\text{covalent}}}$. So, using the covalent and van der Waals radius concept this question can be solved.
Complete step by step answer:
The atomic number of fluorine is 9 and neon is 10.
The electronic configuration of fluorine (Group-17 element: Halogen) is
The electronic configuration of neon (Group-18 element: Inert gas) is
Thus, we can clearly see fluorine has 5 electrons in 2p orbital. To form an ideal configuration the p orbital should be filled with 6 electrons. In fluorine one electron is less.
Hence, the nuclear charge is high in case of fluorine that leads to the smaller size of fluorine than that of the next inert gas neon.
According to the given options, only option A shows the smaller atomic radius of fluorine than the neon.
The atomic radius of fluorine and neon is 0.75 angstrom and 1.60 angstrom respectively.
So, option A. 0.75, 1.60 is the correct answer.
Note:
In other words, the atomic radius of fluorine is measured by its covalent radius and in case neon the atomic radius is measured by the van der Waals radius. As, the van der Waals radius is always greater than covalent radius, so the fluorine has a smaller radius than neon. Among the four option, only option-A satisfy the condition of $\text{radiu}{{\text{s}}_{\text{vanderWaals}}}$>$\text{radiu}{{\text{s}}_{\text{covalent}}}$. So, using the covalent and van der Waals radius concept this question can be solved.
Recently Updated Pages
Types of Solutions - Solution in Chemistry
Difference Between Crystalline and Amorphous Solid
JEE Main Participating Colleges 2024 - A Complete List of Top Colleges
JEE Main Maths Paper Pattern 2025 – Marking, Sections & Tips
Sign up for JEE Main 2025 Live Classes - Vedantu
JEE Main 2025 Helpline Numbers - Center Contact, Phone Number, Address
Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility & More
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking
JEE Main 2023 January 24 Shift 2 Question Paper with Answer Keys & Solutions
Learn About Angle Of Deviation In Prism: JEE Main Physics 2025
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
JEE Main Login 2045: Step-by-Step Instructions and Details
Other Pages
NCERT Solutions for Class 11 Chemistry Chapter 7 Redox Reaction
NCERT Solutions for Class 11 Chemistry Chapter 5 Thermodynamics
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs
NCERT Solutions for Class 11 Chemistry Chapter 8 Organic Chemistry
NCERT Solutions for Class 11 Chemistry Chapter 6 Equilibrium
NCERT Solutions for Class 11 Chemistry Chapter 9 Hydrocarbons