Answer
Verified
99.9k+ views
Hint:The atomic radii of an element is completely depending upon the electronic configuration of the element. As we know the electronic configuration of the given element, we can check the orbital occupancy of the electron as well as the radius measurement condition of the given element by which the answer can be given.
Complete step by step answer:
The atomic number of fluorine is 9 and neon is 10.
The electronic configuration of fluorine (Group-17 element: Halogen) is
The electronic configuration of neon (Group-18 element: Inert gas) is
Thus, we can clearly see fluorine has 5 electrons in 2p orbital. To form an ideal configuration the p orbital should be filled with 6 electrons. In fluorine one electron is less.
Hence, the nuclear charge is high in case of fluorine that leads to the smaller size of fluorine than that of the next inert gas neon.
According to the given options, only option A shows the smaller atomic radius of fluorine than the neon.
The atomic radius of fluorine and neon is 0.75 angstrom and 1.60 angstrom respectively.
So, option A. 0.75, 1.60 is the correct answer.
Note:
In other words, the atomic radius of fluorine is measured by its covalent radius and in case neon the atomic radius is measured by the van der Waals radius. As, the van der Waals radius is always greater than covalent radius, so the fluorine has a smaller radius than neon. Among the four option, only option-A satisfy the condition of $\text{radiu}{{\text{s}}_{\text{vanderWaals}}}$>$\text{radiu}{{\text{s}}_{\text{covalent}}}$. So, using the covalent and van der Waals radius concept this question can be solved.
Complete step by step answer:
The atomic number of fluorine is 9 and neon is 10.
The electronic configuration of fluorine (Group-17 element: Halogen) is
The electronic configuration of neon (Group-18 element: Inert gas) is
Thus, we can clearly see fluorine has 5 electrons in 2p orbital. To form an ideal configuration the p orbital should be filled with 6 electrons. In fluorine one electron is less.
Hence, the nuclear charge is high in case of fluorine that leads to the smaller size of fluorine than that of the next inert gas neon.
According to the given options, only option A shows the smaller atomic radius of fluorine than the neon.
The atomic radius of fluorine and neon is 0.75 angstrom and 1.60 angstrom respectively.
So, option A. 0.75, 1.60 is the correct answer.
Note:
In other words, the atomic radius of fluorine is measured by its covalent radius and in case neon the atomic radius is measured by the van der Waals radius. As, the van der Waals radius is always greater than covalent radius, so the fluorine has a smaller radius than neon. Among the four option, only option-A satisfy the condition of $\text{radiu}{{\text{s}}_{\text{vanderWaals}}}$>$\text{radiu}{{\text{s}}_{\text{covalent}}}$. So, using the covalent and van der Waals radius concept this question can be solved.
Recently Updated Pages
Write a composition in approximately 450 500 words class 10 english JEE_Main
Arrange the sentences P Q R between S1 and S5 such class 10 english JEE_Main
Write an article on the need and importance of sports class 10 english JEE_Main
Name the scale on which the destructive energy of an class 11 physics JEE_Main
Choose the exact meaning of the given idiomphrase The class 9 english JEE_Main
Choose the one which best expresses the meaning of class 9 english JEE_Main
Other Pages
Find the moment of inertia through the face diagonal class 11 physics JEE_Main
A tetracyanomethane B carbon dioxide C benzene and class 11 chemistry JEE_Main
A block A slides over another block B which is placed class 11 physics JEE_Main
Two billiard balls of the same size and mass are in class 11 physics JEE_Main
Electric field due to uniformly charged sphere class 12 physics JEE_Main
A series RLC circuit consists of an 8Omega resistor class 12 physics JEE_Main