The average kinetic energy of a gas at $ - {23^0}C\,and\,75cm$ pressure is $5 \times {10^{ - 14}}erg$ for ${H_2}$. The mean kinetic energy of the ${O_{2\,}}\,at\,{227^0}C$ and $150cm$ pressure will be
(A) $40 \times {10^{ - 14}}erg$
(B) $10 \times {10^{ - 14}}erg$
(C) $20 \times {10^{ - 14}}erg$
(D) $80 \times {10^{ - 14}}erg$
Answer
Verified
116.4k+ views
Hint:First start with finding the relation between the average kinetic energy and the temperature of the gas. After finding the relation, use the information provided in the question such as kinetic energy of Hydrogen, temperature of Hydrogen and Oxygen gasses and get the required answer that is kinetic energy of Oxygen gas.
Formula used:
The average kinetic energy is
$K = \dfrac{1}{2}m \times \dfrac{{3RT}}{M}$
Complete answer:
Now, the formula for the average kinetic energy is as follows;
$K = \dfrac{1}{2}mV_{rms}^2$
Where, K is average kinetic energy
m is mass
${V_{rms}}$ is root mean square velocity
Putting value of root mean square velocity:
$K = \dfrac{1}{2}m \times \dfrac{{3RT}}{M}$
Since all the values are constant, we get;
$\dfrac{K}{T} = $ constant
So, $\dfrac{{{K_{{H_2}}}}}{{{K_{{O_2}}}}} = \dfrac{{{T_{{H_2}}}}}{{{T_{{O_2}}}}}$
${K_{{O_2}}} = \dfrac{{{K_{{H_2}}} \times {T_{{O_2}}}}}{{{T_{{H_2}}}}}$
${K_{{O_2}}} = \dfrac{{5 \times {{10}^{ - 14}} \times 500}}{{250}} = 10 \times {10^{ - 14}}erg$
Hence the correct answer is Option(B).
Note: Use the formula for the average kinetic energy carefully, know what are the constant values and what are the variable values and use accordingly. Be careful about the unit of all the quantities; it should be the same while putting in the formula in order to get the correct answer for the given question.
Formula used:
The average kinetic energy is
$K = \dfrac{1}{2}m \times \dfrac{{3RT}}{M}$
Complete answer:
Now, the formula for the average kinetic energy is as follows;
$K = \dfrac{1}{2}mV_{rms}^2$
Where, K is average kinetic energy
m is mass
${V_{rms}}$ is root mean square velocity
Putting value of root mean square velocity:
$K = \dfrac{1}{2}m \times \dfrac{{3RT}}{M}$
Since all the values are constant, we get;
$\dfrac{K}{T} = $ constant
So, $\dfrac{{{K_{{H_2}}}}}{{{K_{{O_2}}}}} = \dfrac{{{T_{{H_2}}}}}{{{T_{{O_2}}}}}$
${K_{{O_2}}} = \dfrac{{{K_{{H_2}}} \times {T_{{O_2}}}}}{{{T_{{H_2}}}}}$
${K_{{O_2}}} = \dfrac{{5 \times {{10}^{ - 14}} \times 500}}{{250}} = 10 \times {10^{ - 14}}erg$
Hence the correct answer is Option(B).
Note: Use the formula for the average kinetic energy carefully, know what are the constant values and what are the variable values and use accordingly. Be careful about the unit of all the quantities; it should be the same while putting in the formula in order to get the correct answer for the given question.
Recently Updated Pages
Uniform Acceleration - Definition, Equation, Examples, and FAQs
How to find Oxidation Number - Important Concepts for JEE
How Electromagnetic Waves are Formed - Important Concepts for JEE
Electrical Resistance - Important Concepts and Tips for JEE
Average Atomic Mass - Important Concepts and Tips for JEE
Chemical Equation - Important Concepts and Tips for JEE
Trending doubts
Charging and Discharging of Capacitor
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking
Inductive Effect and Acidic Strength - Types, Relation and Applications for JEE
Which of the following is the smallest unit of length class 11 physics JEE_Main
JEE Main 2025 Maths Online - FREE Mock Test Series
JEE Main 2024 Physics Question Paper with Solutions 27 January Shift 1
Other Pages
NCERT Solutions for Class 11 Physics Chapter 7 Gravitation
NCERT Solutions for Class 11 Physics Chapter 8 Mechanical Properties of Solids
Thermodynamics Class 11 Notes CBSE Physics Chapter 11 (Free PDF Download)
NCERT Solutions for Class 11 Physics Chapter 3 Motion In A Plane
Ideal and Non-Ideal Solutions Raoult's Law - JEE