
The binding energy of deuteron $({}_1{H^2})$ is $1.15MeV$ per nucleon, and an alpha particle $({}_2H{e^4})$ has a binding energy of $7.1MeV$ per nucleon. Then in the reaction, ${}_1{H^2} + {}_1{H^2} \to {}_2H{e^4} + Q$ . The energy $Q$ released in $MeV$is:
Answer
232.5k+ views
Hint: As we know the mass of a deuteron and an alpha particle, we can calculate the equivalent energies of the total masses from the given values of binding energy per nucleon. Then from the given reaction, we can calculate the released energy.
Complete step by step solution:
Binding energy per nucleon for deuteron${}_1{H^2}$ is $1.15MeV$
Now, we know that mass of a ${}_1{H^2}$ is $2.01478amu$
And the mass of an alpha particle $({}_2H{e^4})$ is $4.00388amu$ .
So, total mass of the two deuterons is
$\Rightarrow (2 \times 2.01478)amu$
$\Rightarrow 4.02956amu$
Now, the equivalent energy to the two deuterons $(2.{}_1{H^2})$ is
$\Rightarrow (4.02956 \times 1.5)MeV$
$\Rightarrow 6.04434MeV$
And, the energy equivalent to the alpha particle is
$\Rightarrow (7.1 \times 4.00388)MeV$
$\Rightarrow 28.427MeV$
Now, the given reaction is, ${}_1{H^2} + {}_1{H^2} \to {}_2H{e^4} + Q$
Comparing the energies on both sides of this reaction, we can have,
$\Rightarrow 6.04434MeV = 28.427MeV + Q$
Therefore, the value of energy released is
$\Rightarrow (28.427 - 6.04434)MeV$
$\Rightarrow 22.38MeV$
Additional Information:
The energy that keeps protons and neutrons confined to the nucleus is called nuclear binding energy.
If an amount of energy equal to the nuclear binding energy is supplied from outside, then the nucleus disintegrates, and the protons and neutrons exist as free particles. Hence, binding energy of a nucleus can also be defined as the external energy which is required to separate the constituents of the nucleus.
The binding energy of the nucleus can also be explained by mass-energy equivalence. When the protons and the neutrons exist freely in the nucleus, the sum of their individual masses gives the ‘mass-energy’ of the system. From the law of conservation of mass-energy,
If $Z$ = atomic number, $A$ = mass number of the nucleus and, ${m_p}$ , ${m_n}$ be the mass of proton and mass of neutron independently, then,
$Z{m_p}{c^2} + (A - Z){m_n}{c^2} = {M_{Z,A}}{c^2} + \Delta E$
Where, ${M_{Z,A}}$ = mass of nucleus
And, $\Delta E$ = binding energy
Note: Stability of a nucleus depends upon the binding energy per nucleon, i.e., more the binding energy of a nucleus, more is the energy required to separate all the nucleons, and hence the nucleus is more stable.
Complete step by step solution:
Binding energy per nucleon for deuteron${}_1{H^2}$ is $1.15MeV$
Now, we know that mass of a ${}_1{H^2}$ is $2.01478amu$
And the mass of an alpha particle $({}_2H{e^4})$ is $4.00388amu$ .
So, total mass of the two deuterons is
$\Rightarrow (2 \times 2.01478)amu$
$\Rightarrow 4.02956amu$
Now, the equivalent energy to the two deuterons $(2.{}_1{H^2})$ is
$\Rightarrow (4.02956 \times 1.5)MeV$
$\Rightarrow 6.04434MeV$
And, the energy equivalent to the alpha particle is
$\Rightarrow (7.1 \times 4.00388)MeV$
$\Rightarrow 28.427MeV$
Now, the given reaction is, ${}_1{H^2} + {}_1{H^2} \to {}_2H{e^4} + Q$
Comparing the energies on both sides of this reaction, we can have,
$\Rightarrow 6.04434MeV = 28.427MeV + Q$
Therefore, the value of energy released is
$\Rightarrow (28.427 - 6.04434)MeV$
$\Rightarrow 22.38MeV$
Additional Information:
The energy that keeps protons and neutrons confined to the nucleus is called nuclear binding energy.
If an amount of energy equal to the nuclear binding energy is supplied from outside, then the nucleus disintegrates, and the protons and neutrons exist as free particles. Hence, binding energy of a nucleus can also be defined as the external energy which is required to separate the constituents of the nucleus.
The binding energy of the nucleus can also be explained by mass-energy equivalence. When the protons and the neutrons exist freely in the nucleus, the sum of their individual masses gives the ‘mass-energy’ of the system. From the law of conservation of mass-energy,
If $Z$ = atomic number, $A$ = mass number of the nucleus and, ${m_p}$ , ${m_n}$ be the mass of proton and mass of neutron independently, then,
$Z{m_p}{c^2} + (A - Z){m_n}{c^2} = {M_{Z,A}}{c^2} + \Delta E$
Where, ${M_{Z,A}}$ = mass of nucleus
And, $\Delta E$ = binding energy
Note: Stability of a nucleus depends upon the binding energy per nucleon, i.e., more the binding energy of a nucleus, more is the energy required to separate all the nucleons, and hence the nucleus is more stable.
Recently Updated Pages
Circuit Switching vs Packet Switching: Key Differences Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Dual Nature of Radiation and Matter Class 12 Physics Chapter 11 CBSE Notes - 2025-26

Understanding Uniform Acceleration in Physics

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

