The binding energy of deuteron \[(H_1^2)\] is \[1.15MeV\] per nucleon and an alpha particle \[(He_2^4)\] has a binding energy of \[7.1{\text{ }}MeV\] per nucleon. Then in the reaction, \[{\text{H}}_1^2 + {\text{H}}_1^2 \ to {\text{He}}_2^4 + {\text{Q}}\] the energy Q is
(A) \[33.0{\text{ }}MeV\]
(B) \[28.4{\text{ }}MeV\]
(C) \[23.8{\text{ }}MeV\]
(D) \[4.6{\text{ }}MeV\]
Answer
Verified
123k+ views
Hint: Calculate the binding energy of the alpha particle first and then find the total binding energy for the deuterons given.Then finally we can find the value of the energy released using the above two values calculated.
Complete Step by step solution
We know that the binding energy is equal to the amount of energy released in forming the nucleus.
Given that the binding energy of a deuteron \[(H_1^2)\] is \[1.15MeV\] per nucleon and an alpha particle \[(He_2^4)\] has a binding energy of \[7.1{\text{ }}MeV\] per nucleon.
The given reaction is \[{\text{H}}_1^2 + {\text{H}}_1^2 \to {\text{He}}_2^4 + {\text{Q}}\]
We have the total binding energy of the deuterons \[ = {\text{ }}4\left( {1.15} \right){\text{ }} = {\text{ }}4.60{\text{ }}MeV\]
We have the total binding energy of the alpha particles \[ = {\text{ }}4\left( {7.1} \right){\text{ }} = {\text{ }}28.4{\text{ }}MeV\]
Therefore the energy released in the process is equal to the total binding energy of the alpha particle minus the total binding energy of the deuterons.
Then the energy released in the process \[ = {\text{ }}28.4{\text{ }}-{\text{ }}4.60{\text{ }} = {\text{ }}23.8{\text{ }}MeV\]
So the correct option is C.
Note We need to consider the total binding energy of the deuterons and not only the value of the binding energy of the single deuteron and similarly, but we also need to consider the total binding energy of the alpha particles to get the correct value of the energy released.
Complete Step by step solution
We know that the binding energy is equal to the amount of energy released in forming the nucleus.
Given that the binding energy of a deuteron \[(H_1^2)\] is \[1.15MeV\] per nucleon and an alpha particle \[(He_2^4)\] has a binding energy of \[7.1{\text{ }}MeV\] per nucleon.
The given reaction is \[{\text{H}}_1^2 + {\text{H}}_1^2 \to {\text{He}}_2^4 + {\text{Q}}\]
We have the total binding energy of the deuterons \[ = {\text{ }}4\left( {1.15} \right){\text{ }} = {\text{ }}4.60{\text{ }}MeV\]
We have the total binding energy of the alpha particles \[ = {\text{ }}4\left( {7.1} \right){\text{ }} = {\text{ }}28.4{\text{ }}MeV\]
Therefore the energy released in the process is equal to the total binding energy of the alpha particle minus the total binding energy of the deuterons.
Then the energy released in the process \[ = {\text{ }}28.4{\text{ }}-{\text{ }}4.60{\text{ }} = {\text{ }}23.8{\text{ }}MeV\]
So the correct option is C.
Note We need to consider the total binding energy of the deuterons and not only the value of the binding energy of the single deuteron and similarly, but we also need to consider the total binding energy of the alpha particles to get the correct value of the energy released.
Recently Updated Pages
The ratio of the diameters of two metallic rods of class 11 physics JEE_Main
What is the difference between Conduction and conv class 11 physics JEE_Main
Mark the correct statements about the friction between class 11 physics JEE_Main
Find the acceleration of the wedge towards the right class 11 physics JEE_Main
A standing wave is formed by the superposition of two class 11 physics JEE_Main
Derive an expression for work done by the gas in an class 11 physics JEE_Main
Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility & More
JEE Main Login 2045: Step-by-Step Instructions and Details
JEE Main Chemistry Question Paper with Answer Keys and Solutions
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking
JEE Main 2023 January 24 Shift 2 Question Paper with Answer Keys & Solutions
JEE Main Chemistry Exam Pattern 2025
Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs
NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements
NCERT Solutions for Class 11 Physics Chapter 9 Mechanical Properties of Fluids
Units and Measurements Class 11 Notes: CBSE Physics Chapter 1
JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More
NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line