Answer
Verified
112.8k+ views
Hint: To solve this question, we need to use the Stefan’s law to find the absolute temperature in terms of the wavelength for the two objects. Then these have to be substituted in the Wien’s displacement formula for the radiant power from where the required ratio can be calculated.
Formula used: The formulae used in solving this question are given by
${\lambda _{\max }} = \dfrac{b}{T}$, here ${\lambda _{\max }}$ is the maximum wavelength at the absolute temperature $T$, and $b$ is a constant.
\[{P_R} = \sigma {T^4}\], here \[{P_R}\] is the radiant power at the absolute temperature $T$, and $\sigma $ is the Stefan-Boltzmann constant.
Complete step-by-step solution:
Let the power emitted by the source ${O_1}$ be ${P_1}$ and that emitted by the source ${O_2}$ be ${P_2}$.
We know from the Stefan’s law that the radiant power is proportional to the fourth power of the absolute temperature. So it is given by
\[{P_R} = \sigma {T^4}\]
If the temperature of the source ${O_1}$ is equal to ${T_1}$, then the radiant power emitted by it is given by
${P_1} = \sigma {T_1}^4$........... (1)
Also, if the temperature of the source ${O_2}$ is equal to ${T_2}$, then the radiant power emitted by it is given by
${P_2} = \sigma {T_2}^4$...............(2)
Dividing (2) by (1) we get
$\dfrac{{{P_2}}}{{{P_1}}} = \dfrac{{\sigma {T_2}^4}}{{\sigma {T_1}^4}}$
\[ \Rightarrow \dfrac{{{P_2}}}{{{P_1}}} = {\left( {\dfrac{{{T_2}}}{{{T_1}}}} \right)^4}\]........(3)
Now, from the Wien’s displacement law we know that the maximum wavelength of the radiation emitted by an object is inversely proportional to its absolute temperature. So it is given by
${\lambda _{\max }} = \dfrac{b}{T}$
$ \Rightarrow T = \dfrac{b}{{{\lambda _{\max }}}}$
If ${\lambda _1}$ is the maximum temperature of the object ${O_1}$ then its absolute temperature is
${T_1} = \dfrac{b}{{{\lambda _1}}}$.........(4)
Also, if the maximum temperature of the object ${O_1}$ then its absolute temperature is
${T_2} = \dfrac{b}{{{\lambda _2}}}$.........(5)
Putting (4) and (5) in (3) we get
\[\dfrac{{{P_2}}}{{{P_1}}} = {\left( {\dfrac{{b/{\lambda _1}}}{{b/{\lambda _2}}}} \right)^4}\]
\[ \Rightarrow \dfrac{{{P_2}}}{{{P_1}}} = {\left( {\dfrac{{{\lambda _2}}}{{{\lambda _1}}}} \right)^4}\]
According to the question, ${\lambda _1} = 200{\text{nm}}$ and ${\lambda _2} = 600{\text{nm}}$. Substituting these above we get
\[\dfrac{{{P_2}}}{{{P_1}}} = {\left( {\dfrac{{600}}{{200}}} \right)^4}\]
On solving we get
\[\dfrac{{{P_2}}}{{{P_1}}} = 81\]
Thus, the ratio of the power emitted per unit area by source ${O_1}$ to that of source ${O_2}$ is equal to $81:1$.
Note: We have been asked to find out the ratio of the power emitted per unit area, but we have evaluated the ratio of power. This is because the two ratios will be equal as the area will get cancelled from both the numerator and the denominator.
Formula used: The formulae used in solving this question are given by
${\lambda _{\max }} = \dfrac{b}{T}$, here ${\lambda _{\max }}$ is the maximum wavelength at the absolute temperature $T$, and $b$ is a constant.
\[{P_R} = \sigma {T^4}\], here \[{P_R}\] is the radiant power at the absolute temperature $T$, and $\sigma $ is the Stefan-Boltzmann constant.
Complete step-by-step solution:
Let the power emitted by the source ${O_1}$ be ${P_1}$ and that emitted by the source ${O_2}$ be ${P_2}$.
We know from the Stefan’s law that the radiant power is proportional to the fourth power of the absolute temperature. So it is given by
\[{P_R} = \sigma {T^4}\]
If the temperature of the source ${O_1}$ is equal to ${T_1}$, then the radiant power emitted by it is given by
${P_1} = \sigma {T_1}^4$........... (1)
Also, if the temperature of the source ${O_2}$ is equal to ${T_2}$, then the radiant power emitted by it is given by
${P_2} = \sigma {T_2}^4$...............(2)
Dividing (2) by (1) we get
$\dfrac{{{P_2}}}{{{P_1}}} = \dfrac{{\sigma {T_2}^4}}{{\sigma {T_1}^4}}$
\[ \Rightarrow \dfrac{{{P_2}}}{{{P_1}}} = {\left( {\dfrac{{{T_2}}}{{{T_1}}}} \right)^4}\]........(3)
Now, from the Wien’s displacement law we know that the maximum wavelength of the radiation emitted by an object is inversely proportional to its absolute temperature. So it is given by
${\lambda _{\max }} = \dfrac{b}{T}$
$ \Rightarrow T = \dfrac{b}{{{\lambda _{\max }}}}$
If ${\lambda _1}$ is the maximum temperature of the object ${O_1}$ then its absolute temperature is
${T_1} = \dfrac{b}{{{\lambda _1}}}$.........(4)
Also, if the maximum temperature of the object ${O_1}$ then its absolute temperature is
${T_2} = \dfrac{b}{{{\lambda _2}}}$.........(5)
Putting (4) and (5) in (3) we get
\[\dfrac{{{P_2}}}{{{P_1}}} = {\left( {\dfrac{{b/{\lambda _1}}}{{b/{\lambda _2}}}} \right)^4}\]
\[ \Rightarrow \dfrac{{{P_2}}}{{{P_1}}} = {\left( {\dfrac{{{\lambda _2}}}{{{\lambda _1}}}} \right)^4}\]
According to the question, ${\lambda _1} = 200{\text{nm}}$ and ${\lambda _2} = 600{\text{nm}}$. Substituting these above we get
\[\dfrac{{{P_2}}}{{{P_1}}} = {\left( {\dfrac{{600}}{{200}}} \right)^4}\]
On solving we get
\[\dfrac{{{P_2}}}{{{P_1}}} = 81\]
Thus, the ratio of the power emitted per unit area by source ${O_1}$ to that of source ${O_2}$ is equal to $81:1$.
Note: We have been asked to find out the ratio of the power emitted per unit area, but we have evaluated the ratio of power. This is because the two ratios will be equal as the area will get cancelled from both the numerator and the denominator.
Recently Updated Pages
Uniform Acceleration - Definition, Equation, Examples, and FAQs
JEE Main 2021 July 25 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 20 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key
JEE Main 2023 (January 30th Shift 1) Physics Question Paper with Answer Key
Trending doubts
JEE Main 2025: Application Form (Out), Exam Dates (Released), Eligibility & More
JEE Main Chemistry Question Paper with Answer Keys and Solutions
Class 11 JEE Main Physics Mock Test 2025
Angle of Deviation in Prism - Important Formula with Solved Problems for JEE
Average and RMS Value for JEE Main
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
Other Pages
NCERT Solutions for Class 11 Physics Chapter 7 Gravitation
NCERT Solutions for Class 11 Physics Chapter 9 Mechanical Properties of Fluids
Units and Measurements Class 11 Notes - CBSE Physics Chapter 1
NCERT Solutions for Class 11 Physics Chapter 5 Work Energy and Power
NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements
NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line