
The blocks shown in the figure have equal masses. The surface of A is smooth but that of B has a friction coefficient of $0.10$ with the floor. Block A is moving at a speed of $10\,m{s^{ - 1}}$ towards B which is kept at rest. Find the distance travelled by B if $\left( {Take\,g = 10\,m{s^{ - 2}}} \right)$
a) the collision is perfectly elastic and
b) the collision is perfectly inelastic.

Answer
141.3k+ views
Hint: In the question, velocity of the first object and the friction coefficient of A and B is given. By substituting the values in the equation of the distance and relating the equation of mass and velocity, we get the value of the distance of the second object.
Formula used
The expression for finding the distance is,
$W = mg \times d$
Where,
$m$ be the mass, $g$ be the acceleration due to the gravity and $d$ be the distance.
Complete step by step solution
Given that
Velocity of the first object ${v_1} = 10\,m{s^{ - 1}}$
Velocity of the second object ${v_2} = 0$
${v_1}$ and ${v_2}$ be the velocity of $A$ and $B$ respectively after the collision
a) the collision is perfectly elastic
${m_1} + m{v_2} = {v_1} + {v_2}$
Substitute the known values in the above equation, we get
$\Rightarrow 10 + 0 - {v_1} + {v_2}$
Simplify the above equation we get,
$\Rightarrow {v_1} + {v_2} - 10.............\left( 1 \right)$
Now, ${v_1} - {v_2} = - \left( {{v_1} - {v_2}} \right)$
Substitute the known values in the above equation, we get
$\Rightarrow {v_1} - {v_2} = - \left( {10 - 0} \right)$
$\Rightarrow {v_1} - {v_2} = - 10............\left( 2 \right)$
Subtracting the equation $2$from the equation $1$, we get
$\Rightarrow 2{v_2} - 20$
Simplify the above equation we get,
$\Rightarrow {v_2} = 10\,m{s^{ - 1}}$
Now we take the deceleration of B, we get
$B = \mu g$
According to the work energy principle
$\Rightarrow 0.5 \times m \times {0^2} - \left( {0.5} \right) \times m \times {v_2}$
$\Rightarrow W = - \mu \times mg \times d$
Here $d$ is the distance travelled by $B$
$\Rightarrow d = \dfrac{{100}}{{2 \times 0.1 \times 10}}$
$\Rightarrow d = 50\,m$
b) the collision is perfectly inelastic.
$\Rightarrow {m_1} \times {u_1} + m \times {u_2} = \left( {m + m} \right) \times v$
Substitute the known values in the above equation, we get
$\Rightarrow {m_1} \times 10 + m \times 0 = \left( {m + m} \right) \times v$
$\Rightarrow {m_1} \times 10 + m \times 0 = \left( {2m} \right) \times v$
$\Rightarrow v = \dfrac{{10}}{2}$
$\Rightarrow v = 5\,m{s^{ - 1}}$
Now, the two blocks are moved together and sticking to each other, we get
Now apply the principle of work energy, we get
$\Rightarrow \left( {0.5} \right) \times 2\,m \times {0^2} - \left( {0.5} \right) \times 2\,m \times {v^2}$
$\Rightarrow {d_2} = {5^2}\left( {0.1 \times 10 \times 2} \right)$
$\Rightarrow {d_2} = 12.5\,m$
Therefore, the distance travelled by the $B$ is $12.5\,m$.
Note: In the question, we find the value of before collision and after collision and then we equate the values because the collision is perfectly elastic so we get the value of the distance of the second object. But in the perfectly inelastic we equate the value of the two masses then we find the value of the distance of the second object.
Formula used
The expression for finding the distance is,
$W = mg \times d$
Where,
$m$ be the mass, $g$ be the acceleration due to the gravity and $d$ be the distance.
Complete step by step solution
Given that
Velocity of the first object ${v_1} = 10\,m{s^{ - 1}}$
Velocity of the second object ${v_2} = 0$
${v_1}$ and ${v_2}$ be the velocity of $A$ and $B$ respectively after the collision
a) the collision is perfectly elastic
${m_1} + m{v_2} = {v_1} + {v_2}$
Substitute the known values in the above equation, we get
$\Rightarrow 10 + 0 - {v_1} + {v_2}$
Simplify the above equation we get,
$\Rightarrow {v_1} + {v_2} - 10.............\left( 1 \right)$
Now, ${v_1} - {v_2} = - \left( {{v_1} - {v_2}} \right)$
Substitute the known values in the above equation, we get
$\Rightarrow {v_1} - {v_2} = - \left( {10 - 0} \right)$
$\Rightarrow {v_1} - {v_2} = - 10............\left( 2 \right)$
Subtracting the equation $2$from the equation $1$, we get
$\Rightarrow 2{v_2} - 20$
Simplify the above equation we get,
$\Rightarrow {v_2} = 10\,m{s^{ - 1}}$
Now we take the deceleration of B, we get
$B = \mu g$
According to the work energy principle
$\Rightarrow 0.5 \times m \times {0^2} - \left( {0.5} \right) \times m \times {v_2}$
$\Rightarrow W = - \mu \times mg \times d$
Here $d$ is the distance travelled by $B$
$\Rightarrow d = \dfrac{{100}}{{2 \times 0.1 \times 10}}$
$\Rightarrow d = 50\,m$
b) the collision is perfectly inelastic.
$\Rightarrow {m_1} \times {u_1} + m \times {u_2} = \left( {m + m} \right) \times v$
Substitute the known values in the above equation, we get
$\Rightarrow {m_1} \times 10 + m \times 0 = \left( {m + m} \right) \times v$
$\Rightarrow {m_1} \times 10 + m \times 0 = \left( {2m} \right) \times v$
$\Rightarrow v = \dfrac{{10}}{2}$
$\Rightarrow v = 5\,m{s^{ - 1}}$
Now, the two blocks are moved together and sticking to each other, we get
Now apply the principle of work energy, we get
$\Rightarrow \left( {0.5} \right) \times 2\,m \times {0^2} - \left( {0.5} \right) \times 2\,m \times {v^2}$
$\Rightarrow {d_2} = {5^2}\left( {0.1 \times 10 \times 2} \right)$
$\Rightarrow {d_2} = 12.5\,m$
Therefore, the distance travelled by the $B$ is $12.5\,m$.
Note: In the question, we find the value of before collision and after collision and then we equate the values because the collision is perfectly elastic so we get the value of the distance of the second object. But in the perfectly inelastic we equate the value of the two masses then we find the value of the distance of the second object.
Recently Updated Pages
Difference Between Circuit Switching and Packet Switching

Difference Between Mass and Weight

JEE Main Participating Colleges 2024 - A Complete List of Top Colleges

JEE Main Maths Paper Pattern 2025 – Marking, Sections & Tips

Sign up for JEE Main 2025 Live Classes - Vedantu

JEE Main 2025 Helpline Numbers - Center Contact, Phone Number, Address

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

Other Pages
Units and Measurements Class 11 Notes: CBSE Physics Chapter 1

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements

Motion in a Straight Line Class 11 Notes: CBSE Physics Chapter 2

Important Questions for CBSE Class 11 Physics Chapter 1 - Units and Measurement

NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line
