Answer
Verified
112.8k+ views
Hint: In the question, velocity of the first object and the friction coefficient of A and B is given. By substituting the values in the equation of the distance and relating the equation of mass and velocity, we get the value of the distance of the second object.
Formula used
The expression for finding the distance is,
$W = mg \times d$
Where,
$m$ be the mass, $g$ be the acceleration due to the gravity and $d$ be the distance.
Complete step by step solution
Given that
Velocity of the first object ${v_1} = 10\,m{s^{ - 1}}$
Velocity of the second object ${v_2} = 0$
${v_1}$ and ${v_2}$ be the velocity of $A$ and $B$ respectively after the collision
a) the collision is perfectly elastic
${m_1} + m{v_2} = {v_1} + {v_2}$
Substitute the known values in the above equation, we get
$\Rightarrow 10 + 0 - {v_1} + {v_2}$
Simplify the above equation we get,
$\Rightarrow {v_1} + {v_2} - 10.............\left( 1 \right)$
Now, ${v_1} - {v_2} = - \left( {{v_1} - {v_2}} \right)$
Substitute the known values in the above equation, we get
$\Rightarrow {v_1} - {v_2} = - \left( {10 - 0} \right)$
$\Rightarrow {v_1} - {v_2} = - 10............\left( 2 \right)$
Subtracting the equation $2$from the equation $1$, we get
$\Rightarrow 2{v_2} - 20$
Simplify the above equation we get,
$\Rightarrow {v_2} = 10\,m{s^{ - 1}}$
Now we take the deceleration of B, we get
$B = \mu g$
According to the work energy principle
$\Rightarrow 0.5 \times m \times {0^2} - \left( {0.5} \right) \times m \times {v_2}$
$\Rightarrow W = - \mu \times mg \times d$
Here $d$ is the distance travelled by $B$
$\Rightarrow d = \dfrac{{100}}{{2 \times 0.1 \times 10}}$
$\Rightarrow d = 50\,m$
b) the collision is perfectly inelastic.
$\Rightarrow {m_1} \times {u_1} + m \times {u_2} = \left( {m + m} \right) \times v$
Substitute the known values in the above equation, we get
$\Rightarrow {m_1} \times 10 + m \times 0 = \left( {m + m} \right) \times v$
$\Rightarrow {m_1} \times 10 + m \times 0 = \left( {2m} \right) \times v$
$\Rightarrow v = \dfrac{{10}}{2}$
$\Rightarrow v = 5\,m{s^{ - 1}}$
Now, the two blocks are moved together and sticking to each other, we get
Now apply the principle of work energy, we get
$\Rightarrow \left( {0.5} \right) \times 2\,m \times {0^2} - \left( {0.5} \right) \times 2\,m \times {v^2}$
$\Rightarrow {d_2} = {5^2}\left( {0.1 \times 10 \times 2} \right)$
$\Rightarrow {d_2} = 12.5\,m$
Therefore, the distance travelled by the $B$ is $12.5\,m$.
Note: In the question, we find the value of before collision and after collision and then we equate the values because the collision is perfectly elastic so we get the value of the distance of the second object. But in the perfectly inelastic we equate the value of the two masses then we find the value of the distance of the second object.
Formula used
The expression for finding the distance is,
$W = mg \times d$
Where,
$m$ be the mass, $g$ be the acceleration due to the gravity and $d$ be the distance.
Complete step by step solution
Given that
Velocity of the first object ${v_1} = 10\,m{s^{ - 1}}$
Velocity of the second object ${v_2} = 0$
${v_1}$ and ${v_2}$ be the velocity of $A$ and $B$ respectively after the collision
a) the collision is perfectly elastic
${m_1} + m{v_2} = {v_1} + {v_2}$
Substitute the known values in the above equation, we get
$\Rightarrow 10 + 0 - {v_1} + {v_2}$
Simplify the above equation we get,
$\Rightarrow {v_1} + {v_2} - 10.............\left( 1 \right)$
Now, ${v_1} - {v_2} = - \left( {{v_1} - {v_2}} \right)$
Substitute the known values in the above equation, we get
$\Rightarrow {v_1} - {v_2} = - \left( {10 - 0} \right)$
$\Rightarrow {v_1} - {v_2} = - 10............\left( 2 \right)$
Subtracting the equation $2$from the equation $1$, we get
$\Rightarrow 2{v_2} - 20$
Simplify the above equation we get,
$\Rightarrow {v_2} = 10\,m{s^{ - 1}}$
Now we take the deceleration of B, we get
$B = \mu g$
According to the work energy principle
$\Rightarrow 0.5 \times m \times {0^2} - \left( {0.5} \right) \times m \times {v_2}$
$\Rightarrow W = - \mu \times mg \times d$
Here $d$ is the distance travelled by $B$
$\Rightarrow d = \dfrac{{100}}{{2 \times 0.1 \times 10}}$
$\Rightarrow d = 50\,m$
b) the collision is perfectly inelastic.
$\Rightarrow {m_1} \times {u_1} + m \times {u_2} = \left( {m + m} \right) \times v$
Substitute the known values in the above equation, we get
$\Rightarrow {m_1} \times 10 + m \times 0 = \left( {m + m} \right) \times v$
$\Rightarrow {m_1} \times 10 + m \times 0 = \left( {2m} \right) \times v$
$\Rightarrow v = \dfrac{{10}}{2}$
$\Rightarrow v = 5\,m{s^{ - 1}}$
Now, the two blocks are moved together and sticking to each other, we get
Now apply the principle of work energy, we get
$\Rightarrow \left( {0.5} \right) \times 2\,m \times {0^2} - \left( {0.5} \right) \times 2\,m \times {v^2}$
$\Rightarrow {d_2} = {5^2}\left( {0.1 \times 10 \times 2} \right)$
$\Rightarrow {d_2} = 12.5\,m$
Therefore, the distance travelled by the $B$ is $12.5\,m$.
Note: In the question, we find the value of before collision and after collision and then we equate the values because the collision is perfectly elastic so we get the value of the distance of the second object. But in the perfectly inelastic we equate the value of the two masses then we find the value of the distance of the second object.
Recently Updated Pages
Uniform Acceleration - Definition, Equation, Examples, and FAQs
JEE Main 2021 July 25 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 20 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key
JEE Main 2023 (January 30th Shift 1) Physics Question Paper with Answer Key
Trending doubts
JEE Main 2025: Application Form (Out), Exam Dates (Released), Eligibility & More
JEE Main Chemistry Question Paper with Answer Keys and Solutions
Class 11 JEE Main Physics Mock Test 2025
Angle of Deviation in Prism - Important Formula with Solved Problems for JEE
Average and RMS Value for JEE Main
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
Other Pages
NCERT Solutions for Class 11 Physics Chapter 7 Gravitation
NCERT Solutions for Class 11 Physics Chapter 9 Mechanical Properties of Fluids
Units and Measurements Class 11 Notes - CBSE Physics Chapter 1
NCERT Solutions for Class 11 Physics Chapter 5 Work Energy and Power
NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements
NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line