Answer
Verified
393.3k+ views
Hint: Shift at ${n^{th}}$ bright fringe is $(\mu - 1)t = n\lambda $ (where, $\mu $ is the refractive index of the glass plate, $t$ is the thickness of the glass plate, $\lambda $ is the wavelength of the light).
Complete step by step answer:
When two light waves of the same frequency and amplitude superpose in a certain region of a medium, the intensity of the resultant light wave increases at certain points and decreases at some other points in that region. This phenomenon is known as the interference of light and these alternate dark and bright lines are called interference fringes.
According to the formula, shift at ${n^{th}}$ bright fringe is $(\mu - 1)t = n\lambda $ (where, $\mu $ is the refractive index of the glass plate, $t$ is the thickness of the glass plate, $\lambda $ is the wavelength of the light.)
Putting all the given values in the equation, we get,
$(1.5 - 1)t = 4(6000 \times {10^{ - 10}})$
$\implies t = \dfrac{{4(6000 \times {{10}^{ - 10}})}}{{0.5}} = 4.8 \times {10^{ - 10}}m = 4.8\mu m$
So, the thickness of the glass plate is $4.8\mu m$.
$\therefore$ The correct option is A.
Additional Information: In an interference pattern, there is no loss or destruction of light energy in the dark fringes area. The energy just gets shifted from the region of the dark band to the region of the bright band. Total energy remains the same. It can be shown that the average intensity of a set of simultaneous consecutive dark and bright fringes is the same as the intensity of the usual illumination in the same region. Hence, we can say that the interference fringe does not contradict the law of conservation of energy.
Note: It is to be noted that, when light travels through a medium, the equivalent optical path of the actual path traveled by light is the product of the refractive index of the medium and the actual path traveled. Also, though a displacement occurs in fringe pattern due to insertion of a glass plate, fringe width remains unaltered.
Complete step by step answer:
When two light waves of the same frequency and amplitude superpose in a certain region of a medium, the intensity of the resultant light wave increases at certain points and decreases at some other points in that region. This phenomenon is known as the interference of light and these alternate dark and bright lines are called interference fringes.
According to the formula, shift at ${n^{th}}$ bright fringe is $(\mu - 1)t = n\lambda $ (where, $\mu $ is the refractive index of the glass plate, $t$ is the thickness of the glass plate, $\lambda $ is the wavelength of the light.)
Putting all the given values in the equation, we get,
$(1.5 - 1)t = 4(6000 \times {10^{ - 10}})$
$\implies t = \dfrac{{4(6000 \times {{10}^{ - 10}})}}{{0.5}} = 4.8 \times {10^{ - 10}}m = 4.8\mu m$
So, the thickness of the glass plate is $4.8\mu m$.
$\therefore$ The correct option is A.
Additional Information: In an interference pattern, there is no loss or destruction of light energy in the dark fringes area. The energy just gets shifted from the region of the dark band to the region of the bright band. Total energy remains the same. It can be shown that the average intensity of a set of simultaneous consecutive dark and bright fringes is the same as the intensity of the usual illumination in the same region. Hence, we can say that the interference fringe does not contradict the law of conservation of energy.
Note: It is to be noted that, when light travels through a medium, the equivalent optical path of the actual path traveled by light is the product of the refractive index of the medium and the actual path traveled. Also, though a displacement occurs in fringe pattern due to insertion of a glass plate, fringe width remains unaltered.
Recently Updated Pages
Write a composition in approximately 450 500 words class 10 english JEE_Main
Arrange the sentences P Q R between S1 and S5 such class 10 english JEE_Main
Write an article on the need and importance of sports class 10 english JEE_Main
Name the scale on which the destructive energy of an class 11 physics JEE_Main
Choose the exact meaning of the given idiomphrase The class 9 english JEE_Main
Choose the one which best expresses the meaning of class 9 english JEE_Main
Other Pages
The values of kinetic energy K and potential energy class 11 physics JEE_Main
What torque will increase the angular velocity of a class 11 physics JEE_Main
BF3 reacts with NaH at 450 K to form NaF and X When class 11 chemistry JEE_Main
Electric field due to uniformly charged sphere class 12 physics JEE_Main
In the reaction of KMnO4 with H2C204 20 mL of 02 M class 12 chemistry JEE_Main
Dependence of intensity of gravitational field E of class 11 physics JEE_Main