The centre of the sun consists of gases, whose average molecular weight is 2. If the density of the gases is $2.73 \times {10^3}kg/{m^3}$, at a pressure of $1.12 \times {10^9}$atm, the temperature at the centre of the sun is? (Assuming ideal behaviour of gases)
A) $10^8 K$
B) $10^6 °C$
C) $10^7 K$
D) $10^9 K$
Answer
Verified
116.4k+ views
Hint: As per the given question the conditions are ideal then we will use ideal gas equation in order to bring out the temperature at the centre of the sun;
Equation of ideal gas is given as;
$PV = \mu RT$ (P is the pressure, V is the volume, R is the gas constant and T is the temperature)
$\mu $ is $\dfrac{m}{M}$, M is the average molecular weight of the sun, m is the mass of gases.
Complete step by step solution:
Let’s discuss in more detail about the ideal gas equation.
We have three gas laws: Boyle’s law (law of constant temperature) Charles’ law (law of constant volume) and Gay Lussa’s law (law of constant pressure), when the simultaneous change in volume, pressure and temperature takes place gas equation is formed stated below:
$PV = \mu RT$
In which R is the gas constant having a constant value $0.0831 L atm Mol^{-1}K^{-1}$.
The gas which obeys all the gas laws is called an ideal gas.
Now we will come to the calculation part of the question:
$ \Rightarrow PV = \mu RT$.....................(1)
We can write $\mu $ as $\dfrac{m}{M}$
Where, m=$\rho V$ therefore we can write $\mu $as $\dfrac{{\rho V}}{M}$
Substituting the value of $\mu $ in equation 1
$ \Rightarrow PV = \dfrac{{\rho V}}{M}RT$
On cancelling V on LHS and RHS
$ \Rightarrow P = \dfrac{\rho }{M}RT$ ............(2)
From equation 2 we will arrange the terms to get the value of T
$
\Rightarrow \dfrac{{PM}}{{\rho R}} = T \\
\Rightarrow T = \dfrac{{PM}}{{\rho R}} \\
$.........................(3)
In equation 3 we will substitute all the numerical values.
$
\Rightarrow T = \dfrac{{1.12 \times {{10}^9} \times 2}}{{2.73 \times {{10}^3} \times 0.0831}} \\
\Rightarrow T = \dfrac{{2.24 \times {{10}^9}}}{{22.43 \times {{10}^3}}} \\
$ (Simple multiplication is done)
$ \Rightarrow T = 9.98 \times {10^6}$
We assume 9.98 as 10 therefore our solution will become; $T=10^7 K.$
Option (C) is correct.
Note: Ideal gas equation has many relations embedded in it, which has different applications like density of gas is directly proportional to the pressure and molecular mass and inversely proportional to the temperature, this relation is used for extinguishing fire by spreading $CO_2$ carbon dioxide over the fire because density of $CO_2$ is more than oxygen and thus carbon dioxide acts as blanket over the fire in order to reduce the presence the oxygen (because burning needs oxygen).
Equation of ideal gas is given as;
$PV = \mu RT$ (P is the pressure, V is the volume, R is the gas constant and T is the temperature)
$\mu $ is $\dfrac{m}{M}$, M is the average molecular weight of the sun, m is the mass of gases.
Complete step by step solution:
Let’s discuss in more detail about the ideal gas equation.
We have three gas laws: Boyle’s law (law of constant temperature) Charles’ law (law of constant volume) and Gay Lussa’s law (law of constant pressure), when the simultaneous change in volume, pressure and temperature takes place gas equation is formed stated below:
$PV = \mu RT$
In which R is the gas constant having a constant value $0.0831 L atm Mol^{-1}K^{-1}$.
The gas which obeys all the gas laws is called an ideal gas.
Now we will come to the calculation part of the question:
$ \Rightarrow PV = \mu RT$.....................(1)
We can write $\mu $ as $\dfrac{m}{M}$
Where, m=$\rho V$ therefore we can write $\mu $as $\dfrac{{\rho V}}{M}$
Substituting the value of $\mu $ in equation 1
$ \Rightarrow PV = \dfrac{{\rho V}}{M}RT$
On cancelling V on LHS and RHS
$ \Rightarrow P = \dfrac{\rho }{M}RT$ ............(2)
From equation 2 we will arrange the terms to get the value of T
$
\Rightarrow \dfrac{{PM}}{{\rho R}} = T \\
\Rightarrow T = \dfrac{{PM}}{{\rho R}} \\
$.........................(3)
In equation 3 we will substitute all the numerical values.
$
\Rightarrow T = \dfrac{{1.12 \times {{10}^9} \times 2}}{{2.73 \times {{10}^3} \times 0.0831}} \\
\Rightarrow T = \dfrac{{2.24 \times {{10}^9}}}{{22.43 \times {{10}^3}}} \\
$ (Simple multiplication is done)
$ \Rightarrow T = 9.98 \times {10^6}$
We assume 9.98 as 10 therefore our solution will become; $T=10^7 K.$
Option (C) is correct.
Note: Ideal gas equation has many relations embedded in it, which has different applications like density of gas is directly proportional to the pressure and molecular mass and inversely proportional to the temperature, this relation is used for extinguishing fire by spreading $CO_2$ carbon dioxide over the fire because density of $CO_2$ is more than oxygen and thus carbon dioxide acts as blanket over the fire in order to reduce the presence the oxygen (because burning needs oxygen).
Recently Updated Pages
Uniform Acceleration - Definition, Equation, Examples, and FAQs
How to find Oxidation Number - Important Concepts for JEE
How Electromagnetic Waves are Formed - Important Concepts for JEE
Electrical Resistance - Important Concepts and Tips for JEE
Average Atomic Mass - Important Concepts and Tips for JEE
Chemical Equation - Important Concepts and Tips for JEE
Trending doubts
JEE Main 2025: Application Form (Out), Exam Dates (Released), Eligibility & More
JEE Main Login 2045: Step-by-Step Instructions and Details
Class 11 JEE Main Physics Mock Test 2025
JEE Main Chemistry Question Paper with Answer Keys and Solutions
Learn About Angle Of Deviation In Prism: JEE Main Physics 2025
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
Other Pages
NCERT Solutions for Class 11 Physics Chapter 7 Gravitation
NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements
NCERT Solutions for Class 11 Physics Chapter 9 Mechanical Properties of Fluids
Units and Measurements Class 11 Notes - CBSE Physics Chapter 1
NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line
NCERT Solutions for Class 11 Physics Chapter 8 Mechanical Properties of Solids