Answer
Verified
99.9k+ views
Hint: The given problem can be explained on the basis of the concept of Impulse and momentum. The momentum describes the effect of the inertia of the moving particle. The impulse describes the effect of the force on a particle for a very small duration. The force that acts for a very small duration is called the impulsive force and the force that acts for considerable time is called the non-impulsive force.
Complete step by step answer:
Let us assume that a particle of mass m is moving with initial velocity u and after some time t, the velocity of the particle becomes v. The force that changes the speed of the particle from speed u to speed v is F.
The initial impulse of the particle is given as:
${P_i} = mu$
The final impulse of the particle is given as:
${P_f} = mv$
The change in the momentum of the particle is given as:
$\Delta P = {P_f} - {P_i}......\left( 1 \right)$
Substitute the values of initial momentum${P_i}$ and final momentum ${P_f}$ in the expression to calculate the change in the momentum of the particle.
$\Delta P = mv - mu$
$\Delta P = m\left( {v - u} \right)......\left( 2 \right)$
The acceleration of the particle is given as:
$a = \dfrac{{v - u}}{t}$
The expression for the change in the momentum per unit time is given as:
$\dfrac{{\Delta P}}{t} = \dfrac{{m\left( {v - u} \right)}}{t}......\left( 3 \right)$
Substitute the value of the acceleration in the expression (3).
$\dfrac{{\Delta P}}{t} = ma......\left( 4 \right)$
The expression for the force on the particle is given as:
\[F = ma\]
Substitute the value of the force in the expression (4).
$\dfrac{{\Delta P}}{t} = F......\left( 5 \right)$
The expression of impulse of the particle is given as:
$I = F \cdot t$
$F = \dfrac{I}{t}$
Substitute the value of force in terms of impulse of the particle in the expression (5).
$\dfrac{{\Delta P}}{t} = \dfrac{I}{t}$
$\Delta P = I......\left( 6 \right)$
From the above expression (6), we can say that change in momentum is the same as the impulse of the particle.
Thus, the change in momentum of a body per unit time represents the impulse of the particle and the option (A) is the correct answer.
Note: Always remember that change in the momentum of the particle represents the impulse of the particle. The acceleration describes the variation in the velocity of the particle in certain duration. The kinetic energy of the particle is the same as the energy due to motion of the particle. The resultant force describes the net effect of all the force on the particle.
Complete step by step answer:
Let us assume that a particle of mass m is moving with initial velocity u and after some time t, the velocity of the particle becomes v. The force that changes the speed of the particle from speed u to speed v is F.
The initial impulse of the particle is given as:
${P_i} = mu$
The final impulse of the particle is given as:
${P_f} = mv$
The change in the momentum of the particle is given as:
$\Delta P = {P_f} - {P_i}......\left( 1 \right)$
Substitute the values of initial momentum${P_i}$ and final momentum ${P_f}$ in the expression to calculate the change in the momentum of the particle.
$\Delta P = mv - mu$
$\Delta P = m\left( {v - u} \right)......\left( 2 \right)$
The acceleration of the particle is given as:
$a = \dfrac{{v - u}}{t}$
The expression for the change in the momentum per unit time is given as:
$\dfrac{{\Delta P}}{t} = \dfrac{{m\left( {v - u} \right)}}{t}......\left( 3 \right)$
Substitute the value of the acceleration in the expression (3).
$\dfrac{{\Delta P}}{t} = ma......\left( 4 \right)$
The expression for the force on the particle is given as:
\[F = ma\]
Substitute the value of the force in the expression (4).
$\dfrac{{\Delta P}}{t} = F......\left( 5 \right)$
The expression of impulse of the particle is given as:
$I = F \cdot t$
$F = \dfrac{I}{t}$
Substitute the value of force in terms of impulse of the particle in the expression (5).
$\dfrac{{\Delta P}}{t} = \dfrac{I}{t}$
$\Delta P = I......\left( 6 \right)$
From the above expression (6), we can say that change in momentum is the same as the impulse of the particle.
Thus, the change in momentum of a body per unit time represents the impulse of the particle and the option (A) is the correct answer.
Note: Always remember that change in the momentum of the particle represents the impulse of the particle. The acceleration describes the variation in the velocity of the particle in certain duration. The kinetic energy of the particle is the same as the energy due to motion of the particle. The resultant force describes the net effect of all the force on the particle.
Recently Updated Pages
Write a composition in approximately 450 500 words class 10 english JEE_Main
Arrange the sentences P Q R between S1 and S5 such class 10 english JEE_Main
Write an article on the need and importance of sports class 10 english JEE_Main
Name the scale on which the destructive energy of an class 11 physics JEE_Main
Choose the exact meaning of the given idiomphrase The class 9 english JEE_Main
Choose the one which best expresses the meaning of class 9 english JEE_Main
Other Pages
The values of kinetic energy K and potential energy class 11 physics JEE_Main
What torque will increase the angular velocity of a class 11 physics JEE_Main
BF3 reacts with NaH at 450 K to form NaF and X When class 11 chemistry JEE_Main
Electric field due to uniformly charged sphere class 12 physics JEE_Main
In the reaction of KMnO4 with H2C204 20 mL of 02 M class 12 chemistry JEE_Main
Dependence of intensity of gravitational field E of class 11 physics JEE_Main