
The circumference of a circle is measured as 56cm with an error 0.02cm. The percentage error in its area is
A. $\dfrac{1}{7}$
B. $\dfrac{1}{28}$
C. $\dfrac{1}{14}$
D. $\dfrac{1}{56}$
Answer
143.1k+ views
Hint: We will use the derivative method to find the error percentage in the area. Also, we will use the formula of circumference of circle and area of the area which is given by.
$\begin{align}
& Circumference=2\pi r \\
& Area=\pi {{r}^{2}} \\
\end{align}$
Where ‘r’ is the radius of the circle.
Complete step-by-step answer:
We have been given the circumference of a circle as 56cm with an error of 0.02cm.
We know that circumference of a circle is equal to $2\pi r$, where ‘r’ is the radius of the circle.
Let us suppose the radius of the given circle is ‘r’ cm.
$\begin{align}
& \Rightarrow 2\pi r=56 \\
& \Rightarrow \pi r=28 \\
& \Rightarrow r=\dfrac{28}{\pi } \\
\end{align}$
Circumference (C) $=2\pi r$
On differentiating both sides, we get
$\dfrac{dc}{dr}=2\pi .........\left( 1 \right)$
Now, we know that area of a circle is equal to $\pi {{r}^{2}}$, where ‘r’ is the radius of the circle.
$\Rightarrow A=\pi {{r}^{2}}$
On differentiating with respect of ‘r’ we get,
$\dfrac{dA}{dr}=\dfrac{d\left( \pi {{r}^{2}} \right)}{dr}$
Since, $'\pi '$ is a constant.
$=\pi \dfrac{d{{r}^{2}}}{dr}$
As, we know that $\dfrac{d{{x}^{n}}}{dx}=n\times {{x}^{n-1}}$
$\Rightarrow \dfrac{dA}{dr}=2\pi r.........\left( 2 \right)$
Now, dividing equation (2) by (1), we get,
$\begin{align}
& \dfrac{dA}{dc}=r \\
& \Rightarrow dA=rdc \\
\end{align}$
Here, dA is the error in Area and dc is the error in circumference.
$\Rightarrow dA=r\left( 0.02 \right)$
On dividing by $\pi {{r}^{2}}$ we get,
$\begin{align}
& \dfrac{dA}{\pi {{r}^{2}}}=\dfrac{r\left( 0.02 \right)}{\pi {{r}^{2}}} \\
& \dfrac{dA}{A}=\dfrac{0.02}{\pi r} \\
\end{align}$
We have $\pi r=28$.
$\begin{align}
& \Rightarrow \dfrac{dA}{A}=\dfrac{0.02}{28} \\
& \Rightarrow \dfrac{dA}{A}=\dfrac{1}{1400} \\
\end{align}$
So, percentage error $=\dfrac{dA}{A}\times 100=\dfrac{1}{1400}\times 100$
$=\dfrac{1}{14}%$
Therefore, the correct option of the given question is option (C).
Note: Remember that dA means the error in the function ‘A’ and on dividing it by A we get the relative error. Also, be careful while doing calculation and differentiation while finding the error and substitute the value carefully. Sometimes the student might miss the ‘2’ in the formula for circumference and this might lead to the wrong answer.
$\begin{align}
& Circumference=2\pi r \\
& Area=\pi {{r}^{2}} \\
\end{align}$
Where ‘r’ is the radius of the circle.
Complete step-by-step answer:
We have been given the circumference of a circle as 56cm with an error of 0.02cm.
We know that circumference of a circle is equal to $2\pi r$, where ‘r’ is the radius of the circle.
Let us suppose the radius of the given circle is ‘r’ cm.
$\begin{align}
& \Rightarrow 2\pi r=56 \\
& \Rightarrow \pi r=28 \\
& \Rightarrow r=\dfrac{28}{\pi } \\
\end{align}$
Circumference (C) $=2\pi r$
On differentiating both sides, we get
$\dfrac{dc}{dr}=2\pi .........\left( 1 \right)$
Now, we know that area of a circle is equal to $\pi {{r}^{2}}$, where ‘r’ is the radius of the circle.
$\Rightarrow A=\pi {{r}^{2}}$
On differentiating with respect of ‘r’ we get,
$\dfrac{dA}{dr}=\dfrac{d\left( \pi {{r}^{2}} \right)}{dr}$
Since, $'\pi '$ is a constant.
$=\pi \dfrac{d{{r}^{2}}}{dr}$
As, we know that $\dfrac{d{{x}^{n}}}{dx}=n\times {{x}^{n-1}}$
$\Rightarrow \dfrac{dA}{dr}=2\pi r.........\left( 2 \right)$
Now, dividing equation (2) by (1), we get,
$\begin{align}
& \dfrac{dA}{dc}=r \\
& \Rightarrow dA=rdc \\
\end{align}$
Here, dA is the error in Area and dc is the error in circumference.
$\Rightarrow dA=r\left( 0.02 \right)$
On dividing by $\pi {{r}^{2}}$ we get,
$\begin{align}
& \dfrac{dA}{\pi {{r}^{2}}}=\dfrac{r\left( 0.02 \right)}{\pi {{r}^{2}}} \\
& \dfrac{dA}{A}=\dfrac{0.02}{\pi r} \\
\end{align}$
We have $\pi r=28$.
$\begin{align}
& \Rightarrow \dfrac{dA}{A}=\dfrac{0.02}{28} \\
& \Rightarrow \dfrac{dA}{A}=\dfrac{1}{1400} \\
\end{align}$
So, percentage error $=\dfrac{dA}{A}\times 100=\dfrac{1}{1400}\times 100$
$=\dfrac{1}{14}%$
Therefore, the correct option of the given question is option (C).
Note: Remember that dA means the error in the function ‘A’ and on dividing it by A we get the relative error. Also, be careful while doing calculation and differentiation while finding the error and substitute the value carefully. Sometimes the student might miss the ‘2’ in the formula for circumference and this might lead to the wrong answer.
Recently Updated Pages
Difference Between Mutually Exclusive and Independent Events

Difference Between Area and Volume

JEE Main Participating Colleges 2024 - A Complete List of Top Colleges

JEE Main Maths Paper Pattern 2025 – Marking, Sections & Tips

Sign up for JEE Main 2025 Live Classes - Vedantu

JEE Main 2025 Helpline Numbers - Center Contact, Phone Number, Address

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Degree of Dissociation and Its Formula With Solved Example for JEE

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

Electron Gain Enthalpy and Electron Affinity for JEE

Electrical Field of Charged Spherical Shell - JEE
