![SearchIcon](https://vmkt.vedantu.com/vmkt/PROD/png/bdcdbbd8-08a7-4688-98e6-4aa54e5e0800-1733305962725-4102606384256179.png)
The coefficient of friction between the tires and the road is 0.25. Then find the maximum speed with which a car can be driven around a curve of a radius of 40 m without skidding. (Assume\[g = 10\,m{s^{ - 2}}\])
A. \[40\,m{s^{ - 1}}\]
B. \[20\,m{s^{ - 1}}\]
C. \[15\,m{s^{ - 1}}\]
D. \[10\,m{s^{ - 1}}\]
Answer
125.1k+ views
Hint:Frictional force is defined as the opposing force that is created between two surfaces that try to move in the same direction or that try to move in opposite directions. The main purpose of a frictional force is to create the resistance to the motion of one surface over the other surface.
Formula Used:
The formula to find the frictional force between the road and tire is,
\[F = \mu mg\]
Where, \[\mu \] is coefficient of friction, m is mass and g is acceleration due to gravity.
Complete step by step solution:
Then, frictional force between the road and tire is,
\[F = \mu mg\]
The formula for the centripetal force of the cycle is given by,
\[F = \dfrac{{m{v^2}}}{r}\]
Equating the equation (1) and equation (2), we get,
\[\mu mg = \dfrac{{m{v^2}}}{r}\]
Cancel the mass on both sides, we obtain
\[\mu g = \dfrac{{{v^2}}}{r}\]
Rearranging the equation for v, then the above equation can be written as,
\[{v^2} = \mu gr\]
Taking square root on both sides, then
\[v = \sqrt {\mu gr} \]
Substituting the coefficient of friction \[\mu = 0.25\], acceleration due to gravity \[g = 10m{s^{ - 2}}\], and radius \[r = 40m\] in the above equation, we get,
\[v = \sqrt {0.25 \times 10 \times 40} \]
On multiplying the above equation, then
\[v = 10\,m{s^{ - 1}}\]
Therefore, the maximum speed is \[10\,m{s^{ - 1}}\].
Hence, option D is the correct answer.
Note:Here in this problem, there are two forces acting, that is, one is centripetal force because the cycle moves in the circular path and the other force is the frictional force. According to the law of conservation of energy, when the two forces acting on the system are said to be equal.
Formula Used:
The formula to find the frictional force between the road and tire is,
\[F = \mu mg\]
Where, \[\mu \] is coefficient of friction, m is mass and g is acceleration due to gravity.
Complete step by step solution:
Then, frictional force between the road and tire is,
\[F = \mu mg\]
The formula for the centripetal force of the cycle is given by,
\[F = \dfrac{{m{v^2}}}{r}\]
Equating the equation (1) and equation (2), we get,
\[\mu mg = \dfrac{{m{v^2}}}{r}\]
Cancel the mass on both sides, we obtain
\[\mu g = \dfrac{{{v^2}}}{r}\]
Rearranging the equation for v, then the above equation can be written as,
\[{v^2} = \mu gr\]
Taking square root on both sides, then
\[v = \sqrt {\mu gr} \]
Substituting the coefficient of friction \[\mu = 0.25\], acceleration due to gravity \[g = 10m{s^{ - 2}}\], and radius \[r = 40m\] in the above equation, we get,
\[v = \sqrt {0.25 \times 10 \times 40} \]
On multiplying the above equation, then
\[v = 10\,m{s^{ - 1}}\]
Therefore, the maximum speed is \[10\,m{s^{ - 1}}\].
Hence, option D is the correct answer.
Note:Here in this problem, there are two forces acting, that is, one is centripetal force because the cycle moves in the circular path and the other force is the frictional force. According to the law of conservation of energy, when the two forces acting on the system are said to be equal.
Recently Updated Pages
Young's Double Slit Experiment Step by Step Derivation
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Difference Between Circuit Switching and Packet Switching
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Difference Between Mass and Weight
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Main Participating Colleges 2024 - A Complete List of Top Colleges
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Main Maths Paper Pattern 2025 – Marking, Sections & Tips
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Sign up for JEE Main 2025 Live Classes - Vedantu
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility & More
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
The formula of the kinetic mass of a photon is Where class 12 physics JEE_Main
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Main 2023 January 24 Shift 2 Question Paper with Answer Keys & Solutions
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Learn About Angle Of Deviation In Prism: JEE Main Physics 2025
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Main Login 2045: Step-by-Step Instructions and Details
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Dual Nature of Radiation and Matter Class 12 Notes: CBSE Physics Chapter 11
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Electric field due to uniformly charged sphere class 12 physics JEE_Main
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Ideal and Non-Ideal Solutions Raoult's Law - JEE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Mains 2025 Correction Window Date (Out) – Check Procedure and Fees Here!
![arrow-right](/cdn/images/seo-templates/arrow-right.png)