
The coefficient of thermal conductivity of copper, mercury and glass respectively are ${K_{C,}}{K_m}$ and ${K_g}$ such that ${K_C} > {K_m} > {K_g}$. If the same quantity of heat is flowing per second per unit area through each and corresponding temperature gradient are ${X_c},{X_m}$ and ${X_g}$. Then:
(A) ${X_c} = {X_m} = {X_g}$
(B) ${X_c} > {X_m} > {X_g}$
(C) ${X_c} < {X_m} < {X_g}$
(D) ${X_m} < {X_c} < {X_g}$
Answer
232.8k+ views
Hint We know that the law of conduction of heat is also known as the Fourier’s law. We know that the heat transfer is classified into various mechanisms, which are thermal conduction, thermal conduction, thermal radiation, and the transfer of energy by the phase changes. This is the concept which is used to solve this answer. We should consider the fact that engineers also consider the transfer of mass of differing chemical species, either cold, or hot, to reach the required amount of heat transfer.
Complete step by step answer
We should know that from the basis law of conduction which is Fourier’s law that:
$Q = - KA\left( {\dfrac{{dT}}{{dx}}} \right)$
Where the $\dfrac{{dT}}{{dx}}$is the temperature gradient
So, K is inversely proportional to the temperature gradient.
Hence, we can say that:
${K_{metal}} > {K_{liquid}} > {K_{gas}}$
Now we can write that:
${X_{metal}} < {X_{liquid}} < {X_{gas}}$or we can say,
${X_{copper}} < {X_{mercury}} < {X_{glass}}$
Hence the ceramics material has greater conductivity as compared to that of gas. So it can said that the same quantity of heat is flowing per second per unit area through each and corresponding temperature gradient are ${X_c},{X_m}$ and ${X_g}$, then ${X_c} < {X_m} < {X_g}$.
Hence the correct answer is option C.
Note The law of heat conduction is known as the explanation which states that the rate of transfer of heat through a material is proportional to the negative gradient in the temperature and to the area, at the right angles to that of the gradient, through which the heat will flow.
The basic idea of the law states that the heat flux vector will be proportional to the negative vector gradient of the temperature. The process of conduction is greater in the solids because of the network of the relatively close fixed spatial relationships between the atoms to help the transfer of the energy between the vibration.
Complete step by step answer
We should know that from the basis law of conduction which is Fourier’s law that:
$Q = - KA\left( {\dfrac{{dT}}{{dx}}} \right)$
Where the $\dfrac{{dT}}{{dx}}$is the temperature gradient
So, K is inversely proportional to the temperature gradient.
Hence, we can say that:
${K_{metal}} > {K_{liquid}} > {K_{gas}}$
Now we can write that:
${X_{metal}} < {X_{liquid}} < {X_{gas}}$or we can say,
${X_{copper}} < {X_{mercury}} < {X_{glass}}$
Hence the ceramics material has greater conductivity as compared to that of gas. So it can said that the same quantity of heat is flowing per second per unit area through each and corresponding temperature gradient are ${X_c},{X_m}$ and ${X_g}$, then ${X_c} < {X_m} < {X_g}$.
Hence the correct answer is option C.
Note The law of heat conduction is known as the explanation which states that the rate of transfer of heat through a material is proportional to the negative gradient in the temperature and to the area, at the right angles to that of the gradient, through which the heat will flow.
The basic idea of the law states that the heat flux vector will be proportional to the negative vector gradient of the temperature. The process of conduction is greater in the solids because of the network of the relatively close fixed spatial relationships between the atoms to help the transfer of the energy between the vibration.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding Uniform Acceleration in Physics

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Laws of Motion Class 11 Physics Chapter 4 CBSE Notes - 2025-26

Waves Class 11 Physics Chapter 14 CBSE Notes - 2025-26

Mechanical Properties of Fluids Class 11 Physics Chapter 9 CBSE Notes - 2025-26

Thermodynamics Class 11 Physics Chapter 11 CBSE Notes - 2025-26

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

