Answer
Verified
99.9k+ views
Hint We know that the law of conduction of heat is also known as the Fourier’s law. We know that the heat transfer is classified into various mechanisms, which are thermal conduction, thermal conduction, thermal radiation, and the transfer of energy by the phase changes. This is the concept which is used to solve this answer. We should consider the fact that engineers also consider the transfer of mass of differing chemical species, either cold, or hot, to reach the required amount of heat transfer.
Complete step by step answer
We should know that from the basis law of conduction which is Fourier’s law that:
$Q = - KA\left( {\dfrac{{dT}}{{dx}}} \right)$
Where the $\dfrac{{dT}}{{dx}}$is the temperature gradient
So, K is inversely proportional to the temperature gradient.
Hence, we can say that:
${K_{metal}} > {K_{liquid}} > {K_{gas}}$
Now we can write that:
${X_{metal}} < {X_{liquid}} < {X_{gas}}$or we can say,
${X_{copper}} < {X_{mercury}} < {X_{glass}}$
Hence the ceramics material has greater conductivity as compared to that of gas. So it can said that the same quantity of heat is flowing per second per unit area through each and corresponding temperature gradient are ${X_c},{X_m}$ and ${X_g}$, then ${X_c} < {X_m} < {X_g}$.
Hence the correct answer is option C.
Note The law of heat conduction is known as the explanation which states that the rate of transfer of heat through a material is proportional to the negative gradient in the temperature and to the area, at the right angles to that of the gradient, through which the heat will flow.
The basic idea of the law states that the heat flux vector will be proportional to the negative vector gradient of the temperature. The process of conduction is greater in the solids because of the network of the relatively close fixed spatial relationships between the atoms to help the transfer of the energy between the vibration.
Complete step by step answer
We should know that from the basis law of conduction which is Fourier’s law that:
$Q = - KA\left( {\dfrac{{dT}}{{dx}}} \right)$
Where the $\dfrac{{dT}}{{dx}}$is the temperature gradient
So, K is inversely proportional to the temperature gradient.
Hence, we can say that:
${K_{metal}} > {K_{liquid}} > {K_{gas}}$
Now we can write that:
${X_{metal}} < {X_{liquid}} < {X_{gas}}$or we can say,
${X_{copper}} < {X_{mercury}} < {X_{glass}}$
Hence the ceramics material has greater conductivity as compared to that of gas. So it can said that the same quantity of heat is flowing per second per unit area through each and corresponding temperature gradient are ${X_c},{X_m}$ and ${X_g}$, then ${X_c} < {X_m} < {X_g}$.
Hence the correct answer is option C.
Note The law of heat conduction is known as the explanation which states that the rate of transfer of heat through a material is proportional to the negative gradient in the temperature and to the area, at the right angles to that of the gradient, through which the heat will flow.
The basic idea of the law states that the heat flux vector will be proportional to the negative vector gradient of the temperature. The process of conduction is greater in the solids because of the network of the relatively close fixed spatial relationships between the atoms to help the transfer of the energy between the vibration.
Recently Updated Pages
Write a composition in approximately 450 500 words class 10 english JEE_Main
Arrange the sentences P Q R between S1 and S5 such class 10 english JEE_Main
Write an article on the need and importance of sports class 10 english JEE_Main
Name the scale on which the destructive energy of an class 11 physics JEE_Main
Choose the exact meaning of the given idiomphrase The class 9 english JEE_Main
Choose the one which best expresses the meaning of class 9 english JEE_Main
Other Pages
The values of kinetic energy K and potential energy class 11 physics JEE_Main
What torque will increase the angular velocity of a class 11 physics JEE_Main
BF3 reacts with NaH at 450 K to form NaF and X When class 11 chemistry JEE_Main
Electric field due to uniformly charged sphere class 12 physics JEE_Main
In the reaction of KMnO4 with H2C204 20 mL of 02 M class 12 chemistry JEE_Main
Dependence of intensity of gravitational field E of class 11 physics JEE_Main