The common difference of an A.P. whose first term is unity and whose second tenth and thirty fourth terms are in G.P., is
A. \[\frac{1}{5}\]
B. \[\frac{1}{3}\]
C. \[\frac{1}{6}\]
D. \[\frac{1}{9}\]
Answer
Verified
116.4k+ views
Hint
The distance between each number in an arithmetic series differs frequently. It is known as the common difference because it is both the difference between each number in the sequence and the same, and common, to all of the numbers. An arithmetic progression is a series of differences. It can be determined easily by subtracting the second term from the first term in the arithmetic sequence, the third term from the second term, or any two successive numbers in the sequence.
Common Disparities can be both beneficial and bad. The distance between succeeding terms in an arithmetic series is always the same.
Formula use:
The geometric progression is \[a,b,c\]
\[{b^2} = ac\].
The N th term of the series is \[a + (n - 1)d\]
The A.P series with terms is assumed as
\[a,a + d,a + 2d,a + 3d\]
Complete step-by-step solution
The A.P series with terms is assumed as
\[a,a + d,a + 2d,a + 3d\]
The first term of the series is a.
The N th term of the series is \[a + (n - 1)d\]
\[{T_2} = a + d\]
\[{T_{10}} = a + 9d\]
\[{T_{34}} = a + 33d\]
The series of numbers are in G.P
Assume \[f,g,h\] is in G.P. then, \[{g^2} = fh\]
Hence, \[T_{10}^2 = {T_{2}} \times {T_{34}}\]
\[ = > {(a + 9d)^2} = (a + d) \times (a + 33d)\]
By expanding the equation, it becomes
\[ = > {a^2} + 81{d^2} + 18ad = {a^2} + 33{d^2} + 34ad\]
\[ = > 48{d^2} = 16d\]
Then , the value of d becomes\[ = > d = \frac{1}{3}\]
So, the common difference between the terms is calculated as \[\frac{1}{3}\]
Therefore, the correct option is B.
Note
The difference between two successive words is the most frequent difference in an arithmetic sequence. Given that each term has a common difference, this is an arithmetic sequence. An assortment of integers is referred to be a geometric sequence if each succeeding element is produced by multiplying the previous value by a fixed factor. There is a typical difference between words that follow one another. They all share the same common ratio between words.
The distance between each number in an arithmetic series differs frequently. It is known as the common difference because it is both the difference between each number in the sequence and the same, and common, to all of the numbers. An arithmetic progression is a series of differences. It can be determined easily by subtracting the second term from the first term in the arithmetic sequence, the third term from the second term, or any two successive numbers in the sequence.
Common Disparities can be both beneficial and bad. The distance between succeeding terms in an arithmetic series is always the same.
Formula use:
The geometric progression is \[a,b,c\]
\[{b^2} = ac\].
The N th term of the series is \[a + (n - 1)d\]
The A.P series with terms is assumed as
\[a,a + d,a + 2d,a + 3d\]
Complete step-by-step solution
The A.P series with terms is assumed as
\[a,a + d,a + 2d,a + 3d\]
The first term of the series is a.
The N th term of the series is \[a + (n - 1)d\]
\[{T_2} = a + d\]
\[{T_{10}} = a + 9d\]
\[{T_{34}} = a + 33d\]
The series of numbers are in G.P
Assume \[f,g,h\] is in G.P. then, \[{g^2} = fh\]
Hence, \[T_{10}^2 = {T_{2}} \times {T_{34}}\]
\[ = > {(a + 9d)^2} = (a + d) \times (a + 33d)\]
By expanding the equation, it becomes
\[ = > {a^2} + 81{d^2} + 18ad = {a^2} + 33{d^2} + 34ad\]
\[ = > 48{d^2} = 16d\]
Then , the value of d becomes\[ = > d = \frac{1}{3}\]
So, the common difference between the terms is calculated as \[\frac{1}{3}\]
Therefore, the correct option is B.
Note
The difference between two successive words is the most frequent difference in an arithmetic sequence. Given that each term has a common difference, this is an arithmetic sequence. An assortment of integers is referred to be a geometric sequence if each succeeding element is produced by multiplying the previous value by a fixed factor. There is a typical difference between words that follow one another. They all share the same common ratio between words.
Recently Updated Pages
How to find Oxidation Number - Important Concepts for JEE
How Electromagnetic Waves are Formed - Important Concepts for JEE
Electrical Resistance - Important Concepts and Tips for JEE
Average Atomic Mass - Important Concepts and Tips for JEE
Chemical Equation - Important Concepts and Tips for JEE
Concept of CP and CV of Gas - Important Concepts and Tips for JEE
Trending doubts
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking
Inductive Effect and Acidic Strength - Types, Relation and Applications for JEE
JEE Main 2025 Maths Online - FREE Mock Test Series
JEE Main 2024 Physics Question Paper with Solutions 27 January Shift 1
JEE Main Results 2025: Updates, Toppers, Scorecard, and Cut-Offs
JEE Main Maths Class 12 Mock Test