The component of vector $2i + 3j + 2k$ perpendicular to $i + j + k$ is:
A) $\dfrac{5}{3}\left( {i - 2j + k} \right)$
B) $\dfrac{1}{3}\left( {5i + j - 2k} \right)$
C) $\dfrac{{\left( {7i - 10j + 7k} \right)}}{3}$
D) $\dfrac{{5i - 8j + 5k}}{3}$
Answer
Verified
118.2k+ views
Hint: A vector quantity is such a quantity that has both magnitude as well as direction as opposed to a scalar quantity which only has a magnitude. For performing calculations with vector quantities a separate branch of mathematics known as vector algebra was formed. Vector algebra deals with the algebraic operations like addition, subtraction, multiplication etc. of vector quantities.
Complete step by step answer:
Letus consider that we have been provided with two vectors a and b such that,
$\vec a = 2i + 3j + 2k$
$\vec b = \;i + {\text{j}} + {\text{k}}$
We know that the component of vector a perpendicular to vector b can be obtained by the following expression.
$\vec c = \vec a - \dfrac{{\vec a \cdot \vec b}}{{{{\left| {\vec b} \right|}^2}}} \times \vec b$ …….(1)
Where, vector c is the component of vector a perpendicular to the vector b.
The magnitude of vector a is,
$\left| {\vec a} \right| = \sqrt {{2^2} + {3^2} + {2^2}} = \sqrt {17} $
The magnitude of vector b is,
$\left| {\vec b} \right| = \sqrt {{1^2} + {1^2} + {1^2}} = \sqrt 3 $.....(2)
The scalar or dot product of vectors a & b is given by,
$\vec a \cdot \vec b = 2(1) - 3(1) + 2(1) = 1$......(3)
Now, putting all the values from equations (2) & (3) in equation (1) we get,
$\vec c = 2i + 3j + 2k - \dfrac{1}{{{{\left( {\sqrt 3 } \right)}^2}}} \times \left( {i + {\text{j}} + {\text{k}}} \right)$
$\vec c = \dfrac{5}{3}\left( {i - 2j + k} \right)$
i.e. $\dfrac{5}{3}\left( {i - 2j + k} \right)$ is the vector which is the component of vector a and also perpendicular to vector b.
Hence option (A) is the correct answer option.
Note: For a vector quantity q $\vec q = ai + bj + ck$ a, b and c are the magnitudes of the quantity along x, y and z directions respectively. i is the unit vector along x - direction, j is the unit vector along y - direction, k is the unit vector along z - direction. So if a ${\vec q}$ is a force vector and it is given in Newton, then it means that a Newton of force is applied in x - direction, b Newton Of force is applied in y - direction and c Newton of force is acting in y - direction.
Complete step by step answer:
Letus consider that we have been provided with two vectors a and b such that,
$\vec a = 2i + 3j + 2k$
$\vec b = \;i + {\text{j}} + {\text{k}}$
We know that the component of vector a perpendicular to vector b can be obtained by the following expression.
$\vec c = \vec a - \dfrac{{\vec a \cdot \vec b}}{{{{\left| {\vec b} \right|}^2}}} \times \vec b$ …….(1)
Where, vector c is the component of vector a perpendicular to the vector b.
The magnitude of vector a is,
$\left| {\vec a} \right| = \sqrt {{2^2} + {3^2} + {2^2}} = \sqrt {17} $
The magnitude of vector b is,
$\left| {\vec b} \right| = \sqrt {{1^2} + {1^2} + {1^2}} = \sqrt 3 $.....(2)
The scalar or dot product of vectors a & b is given by,
$\vec a \cdot \vec b = 2(1) - 3(1) + 2(1) = 1$......(3)
Now, putting all the values from equations (2) & (3) in equation (1) we get,
$\vec c = 2i + 3j + 2k - \dfrac{1}{{{{\left( {\sqrt 3 } \right)}^2}}} \times \left( {i + {\text{j}} + {\text{k}}} \right)$
$\vec c = \dfrac{5}{3}\left( {i - 2j + k} \right)$
i.e. $\dfrac{5}{3}\left( {i - 2j + k} \right)$ is the vector which is the component of vector a and also perpendicular to vector b.
Hence option (A) is the correct answer option.
Note: For a vector quantity q $\vec q = ai + bj + ck$ a, b and c are the magnitudes of the quantity along x, y and z directions respectively. i is the unit vector along x - direction, j is the unit vector along y - direction, k is the unit vector along z - direction. So if a ${\vec q}$ is a force vector and it is given in Newton, then it means that a Newton of force is applied in x - direction, b Newton Of force is applied in y - direction and c Newton of force is acting in y - direction.
Recently Updated Pages
Name the scale on which the destructive energy of an class 11 physics JEE_Main
Geostationary Satellites and Geosynchronous Satellites for JEE
Complex Numbers - Important Concepts and Tips for JEE
JEE Main 2023 (February 1st Shift 2) Maths Question Paper with Answer Key
JEE Main 2022 (July 25th Shift 2) Physics Question Paper with Answer Key
Inertial and Non-Inertial Frame of Reference for JEE
Trending doubts
Free Radical Substitution Mechanism of Alkanes for JEE Main 2025
Electron Gain Enthalpy and Electron Affinity for JEE
Collision - Important Concepts and Tips for JEE
JEE Main Chemistry Exam Pattern 2025
The diagram given shows how the net interaction force class 11 physics JEE_Main
An Lshaped glass tube is just immersed in flowing water class 11 physics JEE_Main
Other Pages
NCERT Solutions for Class 11 Physics Chapter 4 Laws of Motion
NCERT Solutions for Class 11 Physics Chapter 3 Motion In A Plane
NCERT Solutions for Class 11 Physics Chapter 13 Oscillations
Find the current in wire AB class 11 physics JEE_Main
JEE Main 2023 January 25 Shift 1 Question Paper with Answer Keys & Solutions
Thermodynamics Class 11 Notes CBSE Physics Chapter 11 (Free PDF Download)