Answer
Verified
113.7k+ views
Hint: We are provided with image formation of a convex lens in a microscope that is at least distance of distinct vision which is generally 25cm for normal human eyes.
Formula used:
$m = 1 + \dfrac{D}{f}$ (where m is the magnification, D is the least distance of distinct vision and f is the focal length)
Using the above relation we will find the focal length of the convex lens.
Complete step by step solution:
Let’s discuss some of the properties of convex lenses and simple microscopes first.
Optical lenses are generally made up of two spherical surfaces. Converging lens is called the convex lens which converges rays of the incident light parallel to the principal axis at one point; this is the reason converging lenses are used in microscope-like objects to focus minute particles. Convex lenses are thick at the middle and thin at the top.
Microscope: microscope is the instrument used to see objects which are too small to be seen by the naked eyes.
Now we will calculate the focal length of the lens.
$
\Rightarrow m = 1 + \dfrac{D}{f} \\
\Rightarrow 5 = 1 + \dfrac{{25}}{f} \\
$(we have used the formula mentioned in the hint above and substituted values)
$
\Rightarrow 5 - 1 = \dfrac{{25}}{f} \\
\Rightarrow 4 = \dfrac{{25}}{f} \\
\Rightarrow f = \dfrac{{25}}{4} \\
$(We have rearranged the terms and came to the equation of the focal length)
$ \Rightarrow f = 6.25cm$ (Focal length of the convex lens)
Option (A) is correct.
Note: Converging lens (convex lens) is used for making magnifying glasses, binoculars, microscope, telescopes, camera, eyeglasses (for correction of hypermetropia), flashlights, peepholes etc.
Diverging lenses (concave lenses) are called negative lenses because they do not focus the light at one point instead diverge it.
Formula used:
$m = 1 + \dfrac{D}{f}$ (where m is the magnification, D is the least distance of distinct vision and f is the focal length)
Using the above relation we will find the focal length of the convex lens.
Complete step by step solution:
Let’s discuss some of the properties of convex lenses and simple microscopes first.
Optical lenses are generally made up of two spherical surfaces. Converging lens is called the convex lens which converges rays of the incident light parallel to the principal axis at one point; this is the reason converging lenses are used in microscope-like objects to focus minute particles. Convex lenses are thick at the middle and thin at the top.
Microscope: microscope is the instrument used to see objects which are too small to be seen by the naked eyes.
Now we will calculate the focal length of the lens.
$
\Rightarrow m = 1 + \dfrac{D}{f} \\
\Rightarrow 5 = 1 + \dfrac{{25}}{f} \\
$(we have used the formula mentioned in the hint above and substituted values)
$
\Rightarrow 5 - 1 = \dfrac{{25}}{f} \\
\Rightarrow 4 = \dfrac{{25}}{f} \\
\Rightarrow f = \dfrac{{25}}{4} \\
$(We have rearranged the terms and came to the equation of the focal length)
$ \Rightarrow f = 6.25cm$ (Focal length of the convex lens)
Option (A) is correct.
Note: Converging lens (convex lens) is used for making magnifying glasses, binoculars, microscope, telescopes, camera, eyeglasses (for correction of hypermetropia), flashlights, peepholes etc.
Diverging lenses (concave lenses) are called negative lenses because they do not focus the light at one point instead diverge it.
Recently Updated Pages
JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key
Geostationary Satellites and Geosynchronous Satellites for JEE
Complex Numbers - Important Concepts and Tips for JEE
JEE Main 2023 (February 1st Shift 2) Maths Question Paper with Answer Key
JEE Main 2022 (July 25th Shift 2) Physics Question Paper with Answer Key
Inertial and Non-Inertial Frame of Reference for JEE
Trending doubts
JEE Main 2025: Application Form (Out), Exam Dates (Released), Eligibility & More
JEE Main Chemistry Question Paper with Answer Keys and Solutions
Angle of Deviation in Prism - Important Formula with Solved Problems for JEE
JEE Main Login 2045: Step-by-Step Instructions and Details
Average and RMS Value for JEE Main
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs
Dual Nature of Radiation and Matter Class 12 Notes CBSE Physics Chapter 11 (Free PDF Download)
Degree of Dissociation and Its Formula With Solved Example for JEE
Diffraction of Light - Young’s Single Slit Experiment
JEE Main 2025: Derivation of Equation of Trajectory in Physics
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking