The count rate of a Geiger- Muller counter for the radiation of a radioactive material of half-life of 30 minutes decreases to $5s^{-1}$ after 2 hours. The initial count rate was
A. $25 s^{-1}$
B. $20 s^{-1}$
C. $80 s^{-1}$
D. $625 s^{-1}$
Answer
Verified
116.4k+ views
Hint: The Geiger-Muller counter is used for measuring the radiation emitted by a radioactive material. Half-life of the material is also given. After 2 hrs it rate decreases to $5s^{-1}$. We have to find the initial rate using the given data.
Formula used:
We can use the same formula connecting amount of the original sample, remaining amount of the sample, half-life and time taken for decay:
$\dfrac{N}{N_{0}}=\left(\dfrac{1}{2}\right)^{\dfrac{t}{T}}$
Where $\mathrm{N}$ is the amount of sample remaining after $t$ time or final rate.
$N_{0}$ is the original amount of sample or initial rate.
$\mathrm{T}$ is the half-life of the radioactive material.
Complete answer:
We have a radioactive material of half-life 30 minutes. And the count rate of Gieger-Muller counter
decreases to $5 s^{-1}$ after 2 hrs. With these data we have to find the initial rate shown in
Geiger-Muller counter.
In order to find the initial rate, we have the equation connecting all the known factors in question as:
$\dfrac{N}{N_{0}}=\left(\dfrac{1}{2}\right)^{\dfrac{t}{T}}$
Here we have to find $N_{0}$ that is the initial count rate.
Final count rate, $N=5 s^{-1}$
Half-life of the radioactive material, $T=30$ minutes
Time taken, $t=2 h r s=120$ minutes
On substituting the values in the equation, we get:
$\dfrac{5}{N_{0}}=\left(\dfrac{1}{2}\right)^{\dfrac{120}{30}}$
Therefore, initial count rate is:
$N_{0}=\dfrac{5}{\left(\dfrac{1}{2}\right)^{4}}=5 \times 2^{4}=16 \times 5=80 s^{-1}$
Thus, option (D) is correct.
Additional information: The Geiger-Muller counter is an instrument which measures and detects ionization produced by radiation. It can count particles at rates up to 10,000 per second. Radioactive particles produce radiation when it decays. So, it can also be used to measure decay of radioactive materials.
Note: Amount here is taken as the rate since the rate is given in the question. Radioactivity measurement means how much of radioactivity has decayed. So, we can replace the amount with the rate. Don’t forget to convert the unit of time before calculating.
Formula used:
We can use the same formula connecting amount of the original sample, remaining amount of the sample, half-life and time taken for decay:
$\dfrac{N}{N_{0}}=\left(\dfrac{1}{2}\right)^{\dfrac{t}{T}}$
Where $\mathrm{N}$ is the amount of sample remaining after $t$ time or final rate.
$N_{0}$ is the original amount of sample or initial rate.
$\mathrm{T}$ is the half-life of the radioactive material.
Complete answer:
We have a radioactive material of half-life 30 minutes. And the count rate of Gieger-Muller counter
decreases to $5 s^{-1}$ after 2 hrs. With these data we have to find the initial rate shown in
Geiger-Muller counter.
In order to find the initial rate, we have the equation connecting all the known factors in question as:
$\dfrac{N}{N_{0}}=\left(\dfrac{1}{2}\right)^{\dfrac{t}{T}}$
Here we have to find $N_{0}$ that is the initial count rate.
Final count rate, $N=5 s^{-1}$
Half-life of the radioactive material, $T=30$ minutes
Time taken, $t=2 h r s=120$ minutes
On substituting the values in the equation, we get:
$\dfrac{5}{N_{0}}=\left(\dfrac{1}{2}\right)^{\dfrac{120}{30}}$
Therefore, initial count rate is:
$N_{0}=\dfrac{5}{\left(\dfrac{1}{2}\right)^{4}}=5 \times 2^{4}=16 \times 5=80 s^{-1}$
Thus, option (D) is correct.
Additional information: The Geiger-Muller counter is an instrument which measures and detects ionization produced by radiation. It can count particles at rates up to 10,000 per second. Radioactive particles produce radiation when it decays. So, it can also be used to measure decay of radioactive materials.
Note: Amount here is taken as the rate since the rate is given in the question. Radioactivity measurement means how much of radioactivity has decayed. So, we can replace the amount with the rate. Don’t forget to convert the unit of time before calculating.
Recently Updated Pages
Uniform Acceleration - Definition, Equation, Examples, and FAQs
Young's Double Slit Experiment Step by Step Derivation
How to find Oxidation Number - Important Concepts for JEE
How Electromagnetic Waves are Formed - Important Concepts for JEE
Electrical Resistance - Important Concepts and Tips for JEE
Average Atomic Mass - Important Concepts and Tips for JEE
Trending doubts
JEE Main 2025: Application Form (Out), Exam Dates (Released), Eligibility & More
JEE Main Chemistry Question Paper with Answer Keys and Solutions
Learn About Angle Of Deviation In Prism: JEE Main Physics 2025
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
JEE Main Login 2045: Step-by-Step Instructions and Details
Physics Average Value and RMS Value JEE Main 2025
Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs
Dual Nature of Radiation and Matter Class 12 Notes CBSE Physics Chapter 11 (Free PDF Download)
Inductive Effect and Acidic Strength - Types, Relation and Applications for JEE
Degree of Dissociation and Its Formula With Solved Example for JEE
Diffraction of Light - Young’s Single Slit Experiment
JEE Main 2025: Derivation of Equation of Trajectory in Physics