
The critical angle of glycerine-air is $43^\circ $. Find the refractive index of glycerine $(\sin 43^\circ = 0.68)$
Answer
127.2k+ views
Hint: The critical angle of a medium is the angle such that if the incident angle of a ray of light going from a denser to a rarer medium is greater than the critical angle, the ray of light will be reflected back in the medium. It depends on the refractive index of the denser medium and can be determined from Snell’s law.
Formula used: In this solution, we will use the following formula:
Snell’s law ${\mu _1}\sin {\theta _1} = {\mu _2}\sin {\theta _2}$ where ${\mu _1}$ is the refractive index of the first medium and ${\mu _2}$ , the second. ${\theta _1}$ and ${\theta _2}$ are the incident and the refractive index of the ray of light.
Complete step by step answer:
We’ve been given the critical angle of the glycerine-air medium as $43^\circ $. Let us start by finding the formula of critical angle from Snell’s law:
For the critical angle, the ray of light will be completely perpendicular to the normal. So, ${\theta _2} = 90^\circ $. As the second medium is air, so ${\mu _2} = 1$, we can write
$\sin {\theta _1} = \dfrac{1}{{{\mu _1}}}$
Or
$\theta = {\sin ^{ - 1}}\left( {\dfrac{1}{{{\mu _1}}}} \right)$
$ \Rightarrow {\mu _1} = \dfrac{1}{{\sin {\theta _1}}}$
Since the critical angle for the glycerine-air medium as $43^\circ $, we can find the refractive index of the glycerine as
${\mu _1} = \dfrac{1}{{\sin 43^\circ }} = \dfrac{1}{{0.68}}$
Which gives us
${\mu _1} = 1.47$
Hence the refractive index of glycerine is ${\mu _1} = 1.47$
Note: The critical angle is only defined for a transfer from a denser to a rare medium. In this case, glycerine is the denser medium and air is the rare medium. The critical angle will depend only on the refractive of the denser medium if the rarer medium is air as we can consider the refractive index of air to be 1.
Formula used: In this solution, we will use the following formula:
Snell’s law ${\mu _1}\sin {\theta _1} = {\mu _2}\sin {\theta _2}$ where ${\mu _1}$ is the refractive index of the first medium and ${\mu _2}$ , the second. ${\theta _1}$ and ${\theta _2}$ are the incident and the refractive index of the ray of light.
Complete step by step answer:
We’ve been given the critical angle of the glycerine-air medium as $43^\circ $. Let us start by finding the formula of critical angle from Snell’s law:
For the critical angle, the ray of light will be completely perpendicular to the normal. So, ${\theta _2} = 90^\circ $. As the second medium is air, so ${\mu _2} = 1$, we can write
$\sin {\theta _1} = \dfrac{1}{{{\mu _1}}}$
Or
$\theta = {\sin ^{ - 1}}\left( {\dfrac{1}{{{\mu _1}}}} \right)$
$ \Rightarrow {\mu _1} = \dfrac{1}{{\sin {\theta _1}}}$
Since the critical angle for the glycerine-air medium as $43^\circ $, we can find the refractive index of the glycerine as
${\mu _1} = \dfrac{1}{{\sin 43^\circ }} = \dfrac{1}{{0.68}}$
Which gives us
${\mu _1} = 1.47$
Hence the refractive index of glycerine is ${\mu _1} = 1.47$
Note: The critical angle is only defined for a transfer from a denser to a rare medium. In this case, glycerine is the denser medium and air is the rare medium. The critical angle will depend only on the refractive of the denser medium if the rarer medium is air as we can consider the refractive index of air to be 1.
Recently Updated Pages
JEE Main 2025 - Session 2 Registration Open | Exam Dates, Answer Key, PDF

Wheatstone Bridge - Working Principle, Formula, Derivation, Application

Young's Double Slit Experiment Step by Step Derivation

JEE Main 2023 (April 8th Shift 2) Physics Question Paper with Answer Key

JEE Main 2023 (January 30th Shift 2) Maths Question Paper with Answer Key

JEE Main 2022 (July 25th Shift 2) Physics Question Paper with Answer Key

Trending doubts
JEE Main Login 2045: Step-by-Step Instructions and Details

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Keys & Solutions

JEE Main Participating Colleges 2024 - A Complete List of Top Colleges

JEE Main Course 2025: Get All the Relevant Details

JEE Main Chemistry Question Paper with Answer Keys and Solutions

Other Pages
JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Degree of Dissociation and Its Formula With Solved Example for JEE

Explain the construction and working of a GeigerMuller class 12 physics JEE_Main

Formula for number of images formed by two plane mirrors class 12 physics JEE_Main

Physics Average Value and RMS Value JEE Main 2025
