Answer
Verified
110.7k+ views
Hint: Use the formula of the refractive index of the medium and substitute the formula of velocity of light in air and medium. Substitute the angles, and the obtained refractive index of the medium in the snell’s law to know the critical angle of the medium.
Useful formula:
(1) The relative permittivity is given by
${ \in _r} = \dfrac{{{ \in _{}}}}{{{ \in _0}}}$
Where ${ \in _0}$ is the permittivity of free space and $ \in $ is the permittivity of the medium.
(2) The relative permeability of the medium is given by
${\mu _r} = \dfrac{{{\mu _{}}}}{{{\mu _0}}}$
Where $\mu $ is the permeability of the medium and ${\mu _0}$ is the permeability of the free space.
(3) The refractive index of the medium is given by
${\mu _2} = \dfrac{c}{v}$
Where $c$ is the velocity of the light in vacuum and $v$ is the velocity of the light in medium.
(4) The snell’s law states that
${\mu _2}\sin {\theta _i} = {\mu _1}\sin {\theta _r}$
Where ${\mu _1}$ is the refractive index of free space and ${\mu _2}$ is the refractive index of the medium.
Complete step by step solution:
It is given that the
Relative permittivity of the medium, ${ \in _r} = 3$
The relative permeability of the medium, $\mu = \dfrac{4}{3}$
By taking the formula (3),
${\mu _2} = \dfrac{c}{v}$
Substituting the values of $c = \dfrac{1}{{\sqrt {{v_o}{ \in _0}} }}$ and the $v = \dfrac{1}{{\sqrt {\mu { \in _r}} }}$ in the above formula,
${\mu _2} = \dfrac{{\dfrac{1}{{\sqrt {{v_o}{ \in _0}} }}}}{{\dfrac{1}{{\sqrt {\mu { \in _r}} }}}}$
By simplifying the above equation, and also using the formula (1) and (2) in it, we get
${\mu _2} = \sqrt {{\mu _r}{ \in _r}} $
${\mu _2} = \sqrt {3 \times \dfrac{4}{3}} $
${\mu _2} = 2$
Using the formula (4),
${\mu _2}\sin {\theta _i} = {\mu _1}\sin {\theta _r}$
The critical angle ${\theta _r} = {90^ \circ }$, so
${\mu _2}\sin {\theta _i} = {\mu _1}\sin {90^ \circ }$
${\mu _2}\sin {\theta _i} = 2 \times \dfrac{1}{2}$
Substituting the value of the angles and the refractive index of the medium
$2\sin {\theta _i} = 1$
$\sin {\theta _i} = \dfrac{1}{2}$
Hence the value of the critical angle of the medium is ${30^ \circ }$.
Thus the option (B) is correct.
Note: The snell’s law has the relation, in which the ratio of the sine of the angles of incidence and the refraction is equal to the ratio of the refractive indexes. It is mainly used in fiber optics. Always remember that the critical angle of the free space is ${90^ \circ }$ .
Useful formula:
(1) The relative permittivity is given by
${ \in _r} = \dfrac{{{ \in _{}}}}{{{ \in _0}}}$
Where ${ \in _0}$ is the permittivity of free space and $ \in $ is the permittivity of the medium.
(2) The relative permeability of the medium is given by
${\mu _r} = \dfrac{{{\mu _{}}}}{{{\mu _0}}}$
Where $\mu $ is the permeability of the medium and ${\mu _0}$ is the permeability of the free space.
(3) The refractive index of the medium is given by
${\mu _2} = \dfrac{c}{v}$
Where $c$ is the velocity of the light in vacuum and $v$ is the velocity of the light in medium.
(4) The snell’s law states that
${\mu _2}\sin {\theta _i} = {\mu _1}\sin {\theta _r}$
Where ${\mu _1}$ is the refractive index of free space and ${\mu _2}$ is the refractive index of the medium.
Complete step by step solution:
It is given that the
Relative permittivity of the medium, ${ \in _r} = 3$
The relative permeability of the medium, $\mu = \dfrac{4}{3}$
By taking the formula (3),
${\mu _2} = \dfrac{c}{v}$
Substituting the values of $c = \dfrac{1}{{\sqrt {{v_o}{ \in _0}} }}$ and the $v = \dfrac{1}{{\sqrt {\mu { \in _r}} }}$ in the above formula,
${\mu _2} = \dfrac{{\dfrac{1}{{\sqrt {{v_o}{ \in _0}} }}}}{{\dfrac{1}{{\sqrt {\mu { \in _r}} }}}}$
By simplifying the above equation, and also using the formula (1) and (2) in it, we get
${\mu _2} = \sqrt {{\mu _r}{ \in _r}} $
${\mu _2} = \sqrt {3 \times \dfrac{4}{3}} $
${\mu _2} = 2$
Using the formula (4),
${\mu _2}\sin {\theta _i} = {\mu _1}\sin {\theta _r}$
The critical angle ${\theta _r} = {90^ \circ }$, so
${\mu _2}\sin {\theta _i} = {\mu _1}\sin {90^ \circ }$
${\mu _2}\sin {\theta _i} = 2 \times \dfrac{1}{2}$
Substituting the value of the angles and the refractive index of the medium
$2\sin {\theta _i} = 1$
$\sin {\theta _i} = \dfrac{1}{2}$
Hence the value of the critical angle of the medium is ${30^ \circ }$.
Thus the option (B) is correct.
Note: The snell’s law has the relation, in which the ratio of the sine of the angles of incidence and the refraction is equal to the ratio of the refractive indexes. It is mainly used in fiber optics. Always remember that the critical angle of the free space is ${90^ \circ }$ .
Recently Updated Pages
Write an article on the need and importance of sports class 10 english JEE_Main
Write a composition in approximately 450 500 words class 10 english JEE_Main
Arrange the sentences P Q R between S1 and S5 such class 10 english JEE_Main
If x2 hx 21 0x2 3hx + 35 0h 0 has a common root then class 10 maths JEE_Main
The radius of a sector is 12 cm and the angle is 120circ class 10 maths JEE_Main
For what value of x function fleft x right x4 4x3 + class 10 maths JEE_Main
Other Pages
Electric field due to uniformly charged sphere class 12 physics JEE_Main
If a wire of resistance R is stretched to double of class 12 physics JEE_Main
In Searles apparatus when the experimental wire is class 11 physics JEE_Main
The energy stored is a condenser is in the form of class 12 physics JEE_Main
Excluding stoppages the speed of a bus is 54 kmph and class 11 maths JEE_Main