The critical velocity of a satellite is inversely proportional to the square root of the_______
but it is independent of mass of____________
(A) radius of the orbit, the satellite
(B) mass of the earth, the satellite
(C) mass of the satellite, the earth
(D) radius of the earth, the earth
Answer
Verified
122.4k+ views
Hint To answer this question, we need to use the expression of the critical velocity. Then we have to manipulate that expression in terms of the quantities mentioned in the options.
Formula Used The formulae used to solve this question are
${v_c} = \sqrt {g({R_e} + h)} $
$g = \dfrac{{G{M_e}}}{{{{\left( {{R_e} + h} \right)}^2}}}$
${v_c}$ is the critical velocity of a satellite, ${R_e}$ is the radius of earth, ${M_e}$is the mass of the earth,$h$ is the height of the satellite above the earth.
Complete step-by-step answer
We know that the critical velocity of a satellite revolving around the earth is given by
${v_c} = \sqrt {g({R_e} + h)} $
We know that$g = \dfrac{{G{M_e}}}{{{{\left( {{R_e} + h} \right)}^2}}}$
Substituting this in the above equation, we get
${v_c} = \sqrt {\dfrac{{G{M_e}}}{{{{\left( {{R_e} + h} \right)}^2}}}\left( {{R_e} + h} \right)} $
On simplifying, we get
${v_c} = \sqrt {\dfrac{{G{M_e}}}{{\left( {{R_e} + h} \right)}}} $
As we can see from the above expression for the critical velocity of a satellite, that it is directly proportional to the square root of the mass of the earth. So, this means that the critical velocity is not independent of the mass of the earth.
So, options C and D are incorrect.
Also, from the above expression we can see that the critical velocity of the satellite is inversely proportional to the square root of the radius of the orbit. And there is no term containing the mass of the satellite in the right hand side of the above expression. Therefore, the critical velocity is independent of the mass of the satellite.
Hence, the correct answer is option A.
Note: You might be wondering why the mass of the satellite is not there in the final expression of the critical velocity. The answer to this question comes from the derivation of the critical velocity. We know that the critical velocity is the minimum horizontal velocity given to a satellite to keep it revolving in the earth’s orbit. So, it is obtained by keeping the gravitational force of the earth on the satellite equal to the centripetal force required to keep it moving in the earth’s orbit. Since, both the forces are proportional to the mass of the satellite, so it gets cancelled out of the final expression of the critical velocity.
Formula Used The formulae used to solve this question are
${v_c} = \sqrt {g({R_e} + h)} $
$g = \dfrac{{G{M_e}}}{{{{\left( {{R_e} + h} \right)}^2}}}$
${v_c}$ is the critical velocity of a satellite, ${R_e}$ is the radius of earth, ${M_e}$is the mass of the earth,$h$ is the height of the satellite above the earth.
Complete step-by-step answer
We know that the critical velocity of a satellite revolving around the earth is given by
${v_c} = \sqrt {g({R_e} + h)} $
We know that$g = \dfrac{{G{M_e}}}{{{{\left( {{R_e} + h} \right)}^2}}}$
Substituting this in the above equation, we get
${v_c} = \sqrt {\dfrac{{G{M_e}}}{{{{\left( {{R_e} + h} \right)}^2}}}\left( {{R_e} + h} \right)} $
On simplifying, we get
${v_c} = \sqrt {\dfrac{{G{M_e}}}{{\left( {{R_e} + h} \right)}}} $
As we can see from the above expression for the critical velocity of a satellite, that it is directly proportional to the square root of the mass of the earth. So, this means that the critical velocity is not independent of the mass of the earth.
So, options C and D are incorrect.
Also, from the above expression we can see that the critical velocity of the satellite is inversely proportional to the square root of the radius of the orbit. And there is no term containing the mass of the satellite in the right hand side of the above expression. Therefore, the critical velocity is independent of the mass of the satellite.
Hence, the correct answer is option A.
Note: You might be wondering why the mass of the satellite is not there in the final expression of the critical velocity. The answer to this question comes from the derivation of the critical velocity. We know that the critical velocity is the minimum horizontal velocity given to a satellite to keep it revolving in the earth’s orbit. So, it is obtained by keeping the gravitational force of the earth on the satellite equal to the centripetal force required to keep it moving in the earth’s orbit. Since, both the forces are proportional to the mass of the satellite, so it gets cancelled out of the final expression of the critical velocity.
Recently Updated Pages
The ratio of the diameters of two metallic rods of class 11 physics JEE_Main
What is the difference between Conduction and conv class 11 physics JEE_Main
Mark the correct statements about the friction between class 11 physics JEE_Main
Find the acceleration of the wedge towards the right class 11 physics JEE_Main
A standing wave is formed by the superposition of two class 11 physics JEE_Main
Derive an expression for work done by the gas in an class 11 physics JEE_Main
Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility & More
JEE Main Login 2045: Step-by-Step Instructions and Details
Class 11 JEE Main Physics Mock Test 2025
JEE Main Chemistry Question Paper with Answer Keys and Solutions
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking
JEE Main 2023 January 24 Shift 2 Question Paper with Answer Keys & Solutions
Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs
NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements
NCERT Solutions for Class 11 Physics Chapter 9 Mechanical Properties of Fluids
Units and Measurements Class 11 Notes: CBSE Physics Chapter 1
JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More
NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line