Answer
Verified
99.9k+ views
Hint: According to de- Broglie principle, matter acts as a wave same as that of light which has dual nature of both matter and particles. The de- Broglie wavelength helps to determine the idea of matter that has a wavelength. The particles can be microscopic or macroscopic.
Complete step by step solution:
If the proton has a charge ‘q’ and it is accelerated through a potential applied then the kinetic energy of the proton is given by
$E = qV$---(i)
The formula for the kinetic energy of a moving particle is given by
$E = \dfrac{1}{2}m{v^2}$---(ii)
But the momentum of a body is also the product of its mass and velocity. So it can be written as
$p = mv$
Substituting the value of momentum in equation (ii),
$E = \dfrac{{{p^2}}}{{2m}}$
$\Rightarrow p = \sqrt {2mE} $---(iii)
The formula for de- Broglie wavelength of a moving body is given by
$\Rightarrow \lambda = \dfrac{h}{p}$---(iv)
Where ‘h’ is Planck’s constant
And ‘p’ is the momentum
Substituting the value of momentum from equation (iii) to (iv),
$\Rightarrow \lambda = \dfrac{h}{{\sqrt {2mE} }}$
Substituting the value of E from equation (i),
$\Rightarrow \lambda = \dfrac{h}{{\sqrt {2meV} }}$
Substituting all the values in the above equation,
$\Rightarrow \lambda = \dfrac{{6.6 \times {{10}^{ - 34}}}}{{\sqrt {2 \times 1.6 \times {{10}^{ - 27}} \times 1000 \times 1.6 \times {{10}^{ - 27}}} }}$
Solving above equation, we get
$\Rightarrow \lambda = 0.9 \times {10^{ - 12}}m$
Option B is the right answer.
Note: It is important to note that the de- Broglie equation is used to define the wave properties of matter. The particle and the wave nature of the matter are complementary to each other but it is not mandatory that both of them are present at the same time. The de- Broglie equation is more useful for microscopic particles.
Complete step by step solution:
If the proton has a charge ‘q’ and it is accelerated through a potential applied then the kinetic energy of the proton is given by
$E = qV$---(i)
The formula for the kinetic energy of a moving particle is given by
$E = \dfrac{1}{2}m{v^2}$---(ii)
But the momentum of a body is also the product of its mass and velocity. So it can be written as
$p = mv$
Substituting the value of momentum in equation (ii),
$E = \dfrac{{{p^2}}}{{2m}}$
$\Rightarrow p = \sqrt {2mE} $---(iii)
The formula for de- Broglie wavelength of a moving body is given by
$\Rightarrow \lambda = \dfrac{h}{p}$---(iv)
Where ‘h’ is Planck’s constant
And ‘p’ is the momentum
Substituting the value of momentum from equation (iii) to (iv),
$\Rightarrow \lambda = \dfrac{h}{{\sqrt {2mE} }}$
Substituting the value of E from equation (i),
$\Rightarrow \lambda = \dfrac{h}{{\sqrt {2meV} }}$
Substituting all the values in the above equation,
$\Rightarrow \lambda = \dfrac{{6.6 \times {{10}^{ - 34}}}}{{\sqrt {2 \times 1.6 \times {{10}^{ - 27}} \times 1000 \times 1.6 \times {{10}^{ - 27}}} }}$
Solving above equation, we get
$\Rightarrow \lambda = 0.9 \times {10^{ - 12}}m$
Option B is the right answer.
Note: It is important to note that the de- Broglie equation is used to define the wave properties of matter. The particle and the wave nature of the matter are complementary to each other but it is not mandatory that both of them are present at the same time. The de- Broglie equation is more useful for microscopic particles.
Recently Updated Pages
Write a composition in approximately 450 500 words class 10 english JEE_Main
Arrange the sentences P Q R between S1 and S5 such class 10 english JEE_Main
Write an article on the need and importance of sports class 10 english JEE_Main
Name the scale on which the destructive energy of an class 11 physics JEE_Main
Choose the exact meaning of the given idiomphrase The class 9 english JEE_Main
Choose the one which best expresses the meaning of class 9 english JEE_Main
Other Pages
The values of kinetic energy K and potential energy class 11 physics JEE_Main
Electric field due to uniformly charged sphere class 12 physics JEE_Main
BF3 reacts with NaH at 450 K to form NaF and X When class 11 chemistry JEE_Main
Dependence of intensity of gravitational field E of class 11 physics JEE_Main
In the reaction of KMnO4 with H2C204 20 mL of 02 M class 12 chemistry JEE_Main
What torque will increase the angular velocity of a class 11 physics JEE_Main