Answer
Verified
112.8k+ views
Hint: The acceleration due to gravity is inversely proportional to the square of the radius of the earth. If the gravity is measured at a height then the value of distance will be increased. Thus, the acceleration due to gravity will be decreased.
Complete solution:
Acceleration due to gravity is the rate of change in velocity of a free-falling body under the influence of gravity. The numerical value seems to be a contestant on the surface of earth. And can be called acceleration due to gravity.
The expression for the acceleration due to gravity is given as,
$g = \dfrac{{GM}}{{{R^2}}}...................\left( 1 \right)$
Where, $G$ is the gravitational constant, $M$ is the mass of earth and $R$ is the radius of earth.
When the acceleration due to gravity is calculated at a height of $h$ , then the distance is taken as, $R + h$ .
Then the equation $\left( 1 \right)$ changes to,
$\Rightarrow {g_h} = \dfrac{{GM}}{{{{\left( {R + h} \right)}^2}}}$
If we are considering $h = \dfrac{R}{2}$. That is if the height taken is half the radius of earth.
Then, we can write the equation as,
$\Rightarrow {g_h} = \dfrac{{GM}}{{{{\left( {R + \dfrac{R}{2}} \right)}^2}}} \\
\Rightarrow \dfrac{{GM}}{{{R^2} + {R^2} + \dfrac{{{R^2}}}{4}}} \\
\Rightarrow \dfrac{{GM}}{{\dfrac{{9{R^2}}}{4}}} \\
\Rightarrow \dfrac{{4GM}}{{9{R^2}}}$
Substitute the equation (1) in the above equation.
$\Rightarrow {g_h} = \dfrac{{4g}}{9}$
In order to find the decrease in the value of acceleration due to gravity, subtract the above expression from the acceleration due to gravity.
Therefore, $g - {g_h}$
Substitute the value in above expression,
$\Rightarrow g - \dfrac{{4g}}{9} = \dfrac{{5g}}{9}$
The decrease in the value of $g$ on going to a height above the earth’s surface will be $\dfrac{{5g}}{9}$.
The answer is option B.
Note: It is clear that the acceleration due to gravity will decrease when we go up to the surface of earth. At the surface of earth, the acceleration due to gravity is constant. The acceleration due to gravity is directly proportional to the gravitational constant.
Complete solution:
Acceleration due to gravity is the rate of change in velocity of a free-falling body under the influence of gravity. The numerical value seems to be a contestant on the surface of earth. And can be called acceleration due to gravity.
The expression for the acceleration due to gravity is given as,
$g = \dfrac{{GM}}{{{R^2}}}...................\left( 1 \right)$
Where, $G$ is the gravitational constant, $M$ is the mass of earth and $R$ is the radius of earth.
When the acceleration due to gravity is calculated at a height of $h$ , then the distance is taken as, $R + h$ .
Then the equation $\left( 1 \right)$ changes to,
$\Rightarrow {g_h} = \dfrac{{GM}}{{{{\left( {R + h} \right)}^2}}}$
If we are considering $h = \dfrac{R}{2}$. That is if the height taken is half the radius of earth.
Then, we can write the equation as,
$\Rightarrow {g_h} = \dfrac{{GM}}{{{{\left( {R + \dfrac{R}{2}} \right)}^2}}} \\
\Rightarrow \dfrac{{GM}}{{{R^2} + {R^2} + \dfrac{{{R^2}}}{4}}} \\
\Rightarrow \dfrac{{GM}}{{\dfrac{{9{R^2}}}{4}}} \\
\Rightarrow \dfrac{{4GM}}{{9{R^2}}}$
Substitute the equation (1) in the above equation.
$\Rightarrow {g_h} = \dfrac{{4g}}{9}$
In order to find the decrease in the value of acceleration due to gravity, subtract the above expression from the acceleration due to gravity.
Therefore, $g - {g_h}$
Substitute the value in above expression,
$\Rightarrow g - \dfrac{{4g}}{9} = \dfrac{{5g}}{9}$
The decrease in the value of $g$ on going to a height above the earth’s surface will be $\dfrac{{5g}}{9}$.
The answer is option B.
Note: It is clear that the acceleration due to gravity will decrease when we go up to the surface of earth. At the surface of earth, the acceleration due to gravity is constant. The acceleration due to gravity is directly proportional to the gravitational constant.
Recently Updated Pages
Uniform Acceleration - Definition, Equation, Examples, and FAQs
JEE Main 2021 July 25 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 20 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key
JEE Main 2023 (January 30th Shift 1) Physics Question Paper with Answer Key
Trending doubts
JEE Main 2025: Application Form (Out), Exam Dates (Released), Eligibility & More
Class 11 JEE Main Physics Mock Test 2025
Angle of Deviation in Prism - Important Formula with Solved Problems for JEE
JEE Main Chemistry Question Paper with Answer Keys and Solutions
Average and RMS Value for JEE Main
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
Other Pages
NCERT Solutions for Class 11 Physics Chapter 7 Gravitation
NCERT Solutions for Class 11 Physics Chapter 9 Mechanical Properties of Fluids
Units and Measurements Class 11 Notes - CBSE Physics Chapter 1
NCERT Solutions for Class 11 Physics Chapter 5 Work Energy and Power
NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements
NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line