Answer
Verified
99.9k+ views
Hint:In order to find out the degree of freedom of a stationary rigid body about its axis, first we need to understand what is degree of freedom of a particle or a body in physics and how it is being calculated for different-different body or particle then only we can get the required answer.
Complete answer:
Now, first start with the basic knowledge about the degree of freedom:
Degree of freedom of a body or particle is the number of independent ways in which the body or molecule can move. We can also include in which a body or particle rotates or vibrates in space.
A degree of freedom of a body or particle is a physical quantity and is also independent.
In order to locate a particle in three dimensional space, it requires three coordinates for the position. Similarly, the direction in which a particle moves and the speed with which it moves can be described in terms of three velocity components, each in reference to the three dimensional space.
Also the kinetic energy of a particle or body in motion is depended on the degree of freedom:
$K = \dfrac{{fRT}}{2}$
Where, K is kinetic energy
f is the degree of freedom of the particle or body
R s gas constant
T is temperature
Now, for the stationary rigid body given in the question:
A stationary rigid body can move or vibrate in three dimensional space in 3 directions, which are mutually perpendicular to each other. Therefore, its degree of freedom will be three (3).
Hence the correct answer is Option(C).
Note: Have the basic idea of what is the degree of freedom of a particle or body in a three dimensional space and how it is being calculated. Use the same for the given question that is for a stationary rigid body about its axis and finally get the required answer that is its degree of freedom which is 3 here.
Complete answer:
Now, first start with the basic knowledge about the degree of freedom:
Degree of freedom of a body or particle is the number of independent ways in which the body or molecule can move. We can also include in which a body or particle rotates or vibrates in space.
A degree of freedom of a body or particle is a physical quantity and is also independent.
In order to locate a particle in three dimensional space, it requires three coordinates for the position. Similarly, the direction in which a particle moves and the speed with which it moves can be described in terms of three velocity components, each in reference to the three dimensional space.
Also the kinetic energy of a particle or body in motion is depended on the degree of freedom:
$K = \dfrac{{fRT}}{2}$
Where, K is kinetic energy
f is the degree of freedom of the particle or body
R s gas constant
T is temperature
Now, for the stationary rigid body given in the question:
A stationary rigid body can move or vibrate in three dimensional space in 3 directions, which are mutually perpendicular to each other. Therefore, its degree of freedom will be three (3).
Hence the correct answer is Option(C).
Note: Have the basic idea of what is the degree of freedom of a particle or body in a three dimensional space and how it is being calculated. Use the same for the given question that is for a stationary rigid body about its axis and finally get the required answer that is its degree of freedom which is 3 here.
Recently Updated Pages
Write a composition in approximately 450 500 words class 10 english JEE_Main
Arrange the sentences P Q R between S1 and S5 such class 10 english JEE_Main
Write an article on the need and importance of sports class 10 english JEE_Main
Name the scale on which the destructive energy of an class 11 physics JEE_Main
Choose the exact meaning of the given idiomphrase The class 9 english JEE_Main
Choose the one which best expresses the meaning of class 9 english JEE_Main
Other Pages
A tetracyanomethane B carbon dioxide C benzene and class 11 chemistry JEE_Main
Two billiard balls of the same size and mass are in class 11 physics JEE_Main
If a wire of resistance R is stretched to double of class 12 physics JEE_Main
Find the moment of inertia through the face diagonal class 11 physics JEE_Main
A block A slides over another block B which is placed class 11 physics JEE_Main
The shape of XeF5 + ion is A Pentagonal B Octahedral class 11 chemistry JEE_Main