
The density of water at \[20^\circ C\] is \[998kg/{m^3}\] and at \[40^\circ C\] is \[992kg/{m^3}\]. The coefficient of volume expansion of water is
(A) \[{10^{ - 4}}/^\circ C\]
(B) \[3 \times {10^{ - 4}}/^\circ C\]
(C) \[2 \times {10^{ - 4}}/^\circ C\]
(D) \[6 \times {10^{ - 4}}/^\circ C\]
Answer
139.8k+ views
Hint: Density of a given substance is inversely proportional to the volume of the substance. The volume at lower temperature is used to calculate the coefficient of volume expansion.
Formula used: In this solution we will be using the following formulae;
$\Rightarrow$ \[\gamma = \dfrac{{\Delta V}}{{{V_i}\Delta T}}\] where \[\gamma \] is the coefficient of volume expansion, \[\Delta V\] is the change in volume from initial temperature to final temperature, and \[{V_i}\] is the initial volume (or volume at the lower temperature), and \[\Delta T\] is the change in temperature.
$\Rightarrow$ \[V = \dfrac{m}{\rho }\] where \[V\] is volume, \[m\] is mass and \[\rho \] is density.
Complete Step-by-Step Solution:
To calculate the coefficient of volume expansion of water, we recall the formula
$\Rightarrow$ \[\gamma = \dfrac{{\Delta V}}{{{V_i}\Delta T}}\] where \[\gamma \] is the coefficient of volume expansion, \[\Delta V\] is the change in volume from initial temperature to final temperature, and \[{V_i}\] is the initial volume (or volume at the lower temperature), and \[\Delta T\] is the change in temperature.
But \[V = \dfrac{m}{\rho }\] where \[m\] is mass and \[\rho \] is density.
Hence,
$\Rightarrow$ \[\dfrac{{\Delta V}}{V} = - \dfrac{{\Delta \rho }}{\rho }\]
Hence,
$\Rightarrow$ \[\gamma = \dfrac{{ - \Delta \rho }}{{{\rho _i}\Delta T}}\]
Hence, by inserting known values we have
$\Rightarrow$ \[\gamma = \dfrac{{ - \left( {992 - 998} \right)}}{{992\left( {40 - 20} \right)}}\]
Hence, by computation,
$\Rightarrow$ \[\gamma = \dfrac{6}{{992\left( {20} \right)}} = 3 \times {10^{ - 4}}/^\circ C\]
Hence, the correct option is B
Note: For clarity, the relationship \[\dfrac{{\Delta V}}{V} = - \dfrac{{\Delta \rho }}{\rho }\] can be gotten from \[V = \dfrac{m}{\rho }\] as follows,
We first differentiate the volume with respect to the density, we have
$\Rightarrow$ \[\dfrac{{dV}}{{d\rho }} = - \dfrac{m}{{{\rho ^2}}}\]
Then by multiplying both sides by \[d\rho \] and rewriting the equation, we have
$\Rightarrow$ \[dV = - \dfrac{m}{\rho }\dfrac{{d\rho }}{\rho }\]
Now, since \[\dfrac{m}{\rho } = V\], then by substituting into the equation above, we have
\[dV = - V\dfrac{{d\rho }}{\rho }\]
Then,
$\Rightarrow$ \[\dfrac{{dV}}{V} = - \dfrac{{d\rho }}{\rho }\]
Hence, \[\dfrac{{\Delta V}}{V} = - \dfrac{{\Delta \rho }}{\rho }\]
Also, note that in the formula for coefficient of expansion, the volume at the lower temperature (initial volume) is used. Mistakes are often made when it concerns cooling, that students often use the initial volume as the volume at the hotter temperature (because it’s initial in terms of cooling). Nonetheless, because the coefficient of expansion is being measured, it must be taken as though it was being heated.
Formula used: In this solution we will be using the following formulae;
$\Rightarrow$ \[\gamma = \dfrac{{\Delta V}}{{{V_i}\Delta T}}\] where \[\gamma \] is the coefficient of volume expansion, \[\Delta V\] is the change in volume from initial temperature to final temperature, and \[{V_i}\] is the initial volume (or volume at the lower temperature), and \[\Delta T\] is the change in temperature.
$\Rightarrow$ \[V = \dfrac{m}{\rho }\] where \[V\] is volume, \[m\] is mass and \[\rho \] is density.
Complete Step-by-Step Solution:
To calculate the coefficient of volume expansion of water, we recall the formula
$\Rightarrow$ \[\gamma = \dfrac{{\Delta V}}{{{V_i}\Delta T}}\] where \[\gamma \] is the coefficient of volume expansion, \[\Delta V\] is the change in volume from initial temperature to final temperature, and \[{V_i}\] is the initial volume (or volume at the lower temperature), and \[\Delta T\] is the change in temperature.
But \[V = \dfrac{m}{\rho }\] where \[m\] is mass and \[\rho \] is density.
Hence,
$\Rightarrow$ \[\dfrac{{\Delta V}}{V} = - \dfrac{{\Delta \rho }}{\rho }\]
Hence,
$\Rightarrow$ \[\gamma = \dfrac{{ - \Delta \rho }}{{{\rho _i}\Delta T}}\]
Hence, by inserting known values we have
$\Rightarrow$ \[\gamma = \dfrac{{ - \left( {992 - 998} \right)}}{{992\left( {40 - 20} \right)}}\]
Hence, by computation,
$\Rightarrow$ \[\gamma = \dfrac{6}{{992\left( {20} \right)}} = 3 \times {10^{ - 4}}/^\circ C\]
Hence, the correct option is B
Note: For clarity, the relationship \[\dfrac{{\Delta V}}{V} = - \dfrac{{\Delta \rho }}{\rho }\] can be gotten from \[V = \dfrac{m}{\rho }\] as follows,
We first differentiate the volume with respect to the density, we have
$\Rightarrow$ \[\dfrac{{dV}}{{d\rho }} = - \dfrac{m}{{{\rho ^2}}}\]
Then by multiplying both sides by \[d\rho \] and rewriting the equation, we have
$\Rightarrow$ \[dV = - \dfrac{m}{\rho }\dfrac{{d\rho }}{\rho }\]
Now, since \[\dfrac{m}{\rho } = V\], then by substituting into the equation above, we have
\[dV = - V\dfrac{{d\rho }}{\rho }\]
Then,
$\Rightarrow$ \[\dfrac{{dV}}{V} = - \dfrac{{d\rho }}{\rho }\]
Hence, \[\dfrac{{\Delta V}}{V} = - \dfrac{{\Delta \rho }}{\rho }\]
Also, note that in the formula for coefficient of expansion, the volume at the lower temperature (initial volume) is used. Mistakes are often made when it concerns cooling, that students often use the initial volume as the volume at the hotter temperature (because it’s initial in terms of cooling). Nonetheless, because the coefficient of expansion is being measured, it must be taken as though it was being heated.
Recently Updated Pages
Average fee range for JEE coaching in India- Complete Details

Difference Between Rows and Columns: JEE Main 2024

Difference Between Length and Height: JEE Main 2024

Difference Between Natural and Whole Numbers: JEE Main 2024

Algebraic Formula

Difference Between Constants and Variables: JEE Main 2024

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

Other Pages
Units and Measurements Class 11 Notes: CBSE Physics Chapter 1

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements

Motion in a Straight Line Class 11 Notes: CBSE Physics Chapter 2

Important Questions for CBSE Class 11 Physics Chapter 1 - Units and Measurement

NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line
