
The density of water at \[20^\circ C\] is \[998kg/{m^3}\] and at \[40^\circ C\] is \[992kg/{m^3}\]. The coefficient of volume expansion of water is
(A) \[{10^{ - 4}}/^\circ C\]
(B) \[3 \times {10^{ - 4}}/^\circ C\]
(C) \[2 \times {10^{ - 4}}/^\circ C\]
(D) \[6 \times {10^{ - 4}}/^\circ C\]
Answer
127.8k+ views
Hint: Density of a given substance is inversely proportional to the volume of the substance. The volume at lower temperature is used to calculate the coefficient of volume expansion.
Formula used: In this solution we will be using the following formulae;
$\Rightarrow$ \[\gamma = \dfrac{{\Delta V}}{{{V_i}\Delta T}}\] where \[\gamma \] is the coefficient of volume expansion, \[\Delta V\] is the change in volume from initial temperature to final temperature, and \[{V_i}\] is the initial volume (or volume at the lower temperature), and \[\Delta T\] is the change in temperature.
$\Rightarrow$ \[V = \dfrac{m}{\rho }\] where \[V\] is volume, \[m\] is mass and \[\rho \] is density.
Complete Step-by-Step Solution:
To calculate the coefficient of volume expansion of water, we recall the formula
$\Rightarrow$ \[\gamma = \dfrac{{\Delta V}}{{{V_i}\Delta T}}\] where \[\gamma \] is the coefficient of volume expansion, \[\Delta V\] is the change in volume from initial temperature to final temperature, and \[{V_i}\] is the initial volume (or volume at the lower temperature), and \[\Delta T\] is the change in temperature.
But \[V = \dfrac{m}{\rho }\] where \[m\] is mass and \[\rho \] is density.
Hence,
$\Rightarrow$ \[\dfrac{{\Delta V}}{V} = - \dfrac{{\Delta \rho }}{\rho }\]
Hence,
$\Rightarrow$ \[\gamma = \dfrac{{ - \Delta \rho }}{{{\rho _i}\Delta T}}\]
Hence, by inserting known values we have
$\Rightarrow$ \[\gamma = \dfrac{{ - \left( {992 - 998} \right)}}{{992\left( {40 - 20} \right)}}\]
Hence, by computation,
$\Rightarrow$ \[\gamma = \dfrac{6}{{992\left( {20} \right)}} = 3 \times {10^{ - 4}}/^\circ C\]
Hence, the correct option is B
Note: For clarity, the relationship \[\dfrac{{\Delta V}}{V} = - \dfrac{{\Delta \rho }}{\rho }\] can be gotten from \[V = \dfrac{m}{\rho }\] as follows,
We first differentiate the volume with respect to the density, we have
$\Rightarrow$ \[\dfrac{{dV}}{{d\rho }} = - \dfrac{m}{{{\rho ^2}}}\]
Then by multiplying both sides by \[d\rho \] and rewriting the equation, we have
$\Rightarrow$ \[dV = - \dfrac{m}{\rho }\dfrac{{d\rho }}{\rho }\]
Now, since \[\dfrac{m}{\rho } = V\], then by substituting into the equation above, we have
\[dV = - V\dfrac{{d\rho }}{\rho }\]
Then,
$\Rightarrow$ \[\dfrac{{dV}}{V} = - \dfrac{{d\rho }}{\rho }\]
Hence, \[\dfrac{{\Delta V}}{V} = - \dfrac{{\Delta \rho }}{\rho }\]
Also, note that in the formula for coefficient of expansion, the volume at the lower temperature (initial volume) is used. Mistakes are often made when it concerns cooling, that students often use the initial volume as the volume at the hotter temperature (because it’s initial in terms of cooling). Nonetheless, because the coefficient of expansion is being measured, it must be taken as though it was being heated.
Formula used: In this solution we will be using the following formulae;
$\Rightarrow$ \[\gamma = \dfrac{{\Delta V}}{{{V_i}\Delta T}}\] where \[\gamma \] is the coefficient of volume expansion, \[\Delta V\] is the change in volume from initial temperature to final temperature, and \[{V_i}\] is the initial volume (or volume at the lower temperature), and \[\Delta T\] is the change in temperature.
$\Rightarrow$ \[V = \dfrac{m}{\rho }\] where \[V\] is volume, \[m\] is mass and \[\rho \] is density.
Complete Step-by-Step Solution:
To calculate the coefficient of volume expansion of water, we recall the formula
$\Rightarrow$ \[\gamma = \dfrac{{\Delta V}}{{{V_i}\Delta T}}\] where \[\gamma \] is the coefficient of volume expansion, \[\Delta V\] is the change in volume from initial temperature to final temperature, and \[{V_i}\] is the initial volume (or volume at the lower temperature), and \[\Delta T\] is the change in temperature.
But \[V = \dfrac{m}{\rho }\] where \[m\] is mass and \[\rho \] is density.
Hence,
$\Rightarrow$ \[\dfrac{{\Delta V}}{V} = - \dfrac{{\Delta \rho }}{\rho }\]
Hence,
$\Rightarrow$ \[\gamma = \dfrac{{ - \Delta \rho }}{{{\rho _i}\Delta T}}\]
Hence, by inserting known values we have
$\Rightarrow$ \[\gamma = \dfrac{{ - \left( {992 - 998} \right)}}{{992\left( {40 - 20} \right)}}\]
Hence, by computation,
$\Rightarrow$ \[\gamma = \dfrac{6}{{992\left( {20} \right)}} = 3 \times {10^{ - 4}}/^\circ C\]
Hence, the correct option is B
Note: For clarity, the relationship \[\dfrac{{\Delta V}}{V} = - \dfrac{{\Delta \rho }}{\rho }\] can be gotten from \[V = \dfrac{m}{\rho }\] as follows,
We first differentiate the volume with respect to the density, we have
$\Rightarrow$ \[\dfrac{{dV}}{{d\rho }} = - \dfrac{m}{{{\rho ^2}}}\]
Then by multiplying both sides by \[d\rho \] and rewriting the equation, we have
$\Rightarrow$ \[dV = - \dfrac{m}{\rho }\dfrac{{d\rho }}{\rho }\]
Now, since \[\dfrac{m}{\rho } = V\], then by substituting into the equation above, we have
\[dV = - V\dfrac{{d\rho }}{\rho }\]
Then,
$\Rightarrow$ \[\dfrac{{dV}}{V} = - \dfrac{{d\rho }}{\rho }\]
Hence, \[\dfrac{{\Delta V}}{V} = - \dfrac{{\Delta \rho }}{\rho }\]
Also, note that in the formula for coefficient of expansion, the volume at the lower temperature (initial volume) is used. Mistakes are often made when it concerns cooling, that students often use the initial volume as the volume at the hotter temperature (because it’s initial in terms of cooling). Nonetheless, because the coefficient of expansion is being measured, it must be taken as though it was being heated.
Recently Updated Pages
Difference Between Vapor and Gas: JEE Main 2024

Area of an Octagon Formula - Explanation, and FAQs

Difference Between Solute and Solvent: JEE Main 2024

Absolute Pressure Formula - Explanation, and FAQs

Carbon Dioxide Formula - Definition, Uses and FAQs

Charle's Law Formula - Definition, Derivation and Solved Examples

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility & More

JEE Main Login 2045: Step-by-Step Instructions and Details

Class 11 JEE Main Physics Mock Test 2025

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Keys & Solutions

JEE Mains 2025 Correction Window Date (Out) – Check Procedure and Fees Here!

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements

Units and Measurements Class 11 Notes: CBSE Physics Chapter 1

NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line

Important Questions for CBSE Class 11 Physics Chapter 1 - Units and Measurement
