Answer
Verified
100.2k+ views
Hint: We should know that velocity is defined as the rate change of displacement per unit time. Speed in a specific direction is also known as velocity. Velocity is equal to displacement divided by time. Speed, being a scalar quantity, is the rate at which an object covers distance. The average speed is the distance which is a scalar quantity per time ratio. On the other hand, velocity is a vector quantity; it is direction-aware. An object which moves in the negative direction has a negative velocity. If the object is slowing down then its acceleration vector is directed in the opposite direction as its motion in this case. Based on this we have to solve this question.
Complete step by step answer
We know that angular Velocity determines how fast or how slow an object is rotating. Or one can say that angular velocity is the rate change of angular displacement. The S.I Unit of angular displacement is radians per seconds. Or the S.I Unit of angular velocity is rpm which means revolution per minute. The SI unit of angular velocity is expressed as radians per second with the radian having a dimensionless value of unity, thus the SI units of angular velocity are listed as 1/s. Angular velocity is usually represented by the symbol omega
At first let us begin with time taken by the second hand to complete one complete rotation is 60 seconds.
Thus, the angular velocity of second hand $\mathrm{w}_{\mathrm{s}}=\dfrac{2 \pi}{60} \mathrm{rad} / \mathrm{s}$
So, the time taken by the minute hand to complete one complete rotation is 3600 seconds.
Thus, angular velocity of minute hand $\mathrm{w}_{\mathrm{m}}=\dfrac{2 \pi}{3600} \mathrm{rad} / \mathrm{s}$
Difference in angular velocity $\mathrm{w}_{\mathrm{s}}-\mathrm{w}_{\mathrm{m}}=\dfrac{2 \pi}{60}-\dfrac{2 \pi}{3600}$
$\Rightarrow {{\text{w}}_{\text{s}}}-{{\text{w}}_{\text{m}}}=\dfrac{59\pi }{1800}\text{rad}/\text{s}$
So, the correct option is option B.
Note: We should know that if an object's speed or velocity is increasing at a constant rate then we say it has uniform acceleration. The rate of acceleration is constant. If a car speeds up then slows down then speeds up it doesn't have uniform acceleration. The instantaneous acceleration, or simply acceleration, is defined as the limit of the average acceleration when the interval of time considered approaches 0. It is also defined in a similar manner as the derivative of velocity with respect to time. If an object begins acceleration from rest or a standstill, its initial time is 0. If we get a negative value for acceleration, it means the object is slowing down. The acceleration of an object is its change in velocity over an increment of time. This can mean a change in the object's speed or direction. Average acceleration is the change of velocity over a period of time. Constant or uniform acceleration is when the velocity changes the same amount in every equal time period.
Complete step by step answer
We know that angular Velocity determines how fast or how slow an object is rotating. Or one can say that angular velocity is the rate change of angular displacement. The S.I Unit of angular displacement is radians per seconds. Or the S.I Unit of angular velocity is rpm which means revolution per minute. The SI unit of angular velocity is expressed as radians per second with the radian having a dimensionless value of unity, thus the SI units of angular velocity are listed as 1/s. Angular velocity is usually represented by the symbol omega
At first let us begin with time taken by the second hand to complete one complete rotation is 60 seconds.
Thus, the angular velocity of second hand $\mathrm{w}_{\mathrm{s}}=\dfrac{2 \pi}{60} \mathrm{rad} / \mathrm{s}$
So, the time taken by the minute hand to complete one complete rotation is 3600 seconds.
Thus, angular velocity of minute hand $\mathrm{w}_{\mathrm{m}}=\dfrac{2 \pi}{3600} \mathrm{rad} / \mathrm{s}$
Difference in angular velocity $\mathrm{w}_{\mathrm{s}}-\mathrm{w}_{\mathrm{m}}=\dfrac{2 \pi}{60}-\dfrac{2 \pi}{3600}$
$\Rightarrow {{\text{w}}_{\text{s}}}-{{\text{w}}_{\text{m}}}=\dfrac{59\pi }{1800}\text{rad}/\text{s}$
So, the correct option is option B.
Note: We should know that if an object's speed or velocity is increasing at a constant rate then we say it has uniform acceleration. The rate of acceleration is constant. If a car speeds up then slows down then speeds up it doesn't have uniform acceleration. The instantaneous acceleration, or simply acceleration, is defined as the limit of the average acceleration when the interval of time considered approaches 0. It is also defined in a similar manner as the derivative of velocity with respect to time. If an object begins acceleration from rest or a standstill, its initial time is 0. If we get a negative value for acceleration, it means the object is slowing down. The acceleration of an object is its change in velocity over an increment of time. This can mean a change in the object's speed or direction. Average acceleration is the change of velocity over a period of time. Constant or uniform acceleration is when the velocity changes the same amount in every equal time period.
Recently Updated Pages
Write a composition in approximately 450 500 words class 10 english JEE_Main
Arrange the sentences P Q R between S1 and S5 such class 10 english JEE_Main
Write an article on the need and importance of sports class 10 english JEE_Main
Name the scale on which the destructive energy of an class 11 physics JEE_Main
Choose the exact meaning of the given idiomphrase The class 9 english JEE_Main
Choose the one which best expresses the meaning of class 9 english JEE_Main
Other Pages
The values of kinetic energy K and potential energy class 11 physics JEE_Main
What torque will increase the angular velocity of a class 11 physics JEE_Main
BF3 reacts with NaH at 450 K to form NaF and X When class 11 chemistry JEE_Main
Electric field due to uniformly charged sphere class 12 physics JEE_Main
In the reaction of KMnO4 with H2C204 20 mL of 02 M class 12 chemistry JEE_Main
Dependence of intensity of gravitational field E of class 11 physics JEE_Main