Answer
Verified
99.9k+ views
Hint Manipulate the equation and put R on the left side of the equation and the other terms on the right side. Then substitute the values of each quantity in terms of the fundamental quantities to get the required answer.
Complete step-by-step solution
As given in the question,
As we know that the energy stored in the capacitor is:
\[{\text{E = }}\dfrac{{\text{1}}}{{\text{2}}}{\text{C}}{{\text{V}}^{\text{2}}}\]
\[
{\text{[}}{{\text{M}}^{\text{1}}}{{\text{L}}^{\text{2}}}{{\text{T}}^{{\text{ - 2}}}}{{\text{A}}^{\text{0}}}{\text{] = }}\dfrac{{\text{1}}}{{\text{2}}}{\text{C[}}{{\text{M}}^{\text{1}}}{{\text{L}}^{\text{2}}}{{\text{T}}^{{\text{ - 3}}}}{{\text{A}}^{{\text{ - 1}}}}{{\text{]}}^{\text{2}}} \\
{\text{C = [}}{{\text{M}}^{{\text{ - 1}}}}{{\text{L}}^{{\text{ - 2}}}}{{\text{T}}^4}{{\text{A}}^{\text{2}}}{\text{]}} \\
\]
So the value of capacitance in terms of fundamental quantities is \[{\text{[}}{{\text{M}}^{{\text{ - 1}}}}{{\text{L}}^{{\text{ - 2}}}}{{\text{T}}^{\text{2}}}{{\text{A}}^{\text{2}}}{\text{]}}\]. Substituting this in the above equation we get,
\[{\text{Q = }}{{\text{Q}}_{\text{0}}}{\text{(1 - }}{{\text{e}}^{{\text{ - t/RC}}}}{\text{)}}\]
\[{\text{[}}{{\text{M}}^{\text{0}}}{{\text{L}}^{\text{0}}}{{\text{T}}^{\text{1}}}{{\text{A}}^{\text{1}}}{\text{] = [}}{{\text{M}}^{\text{0}}}{{\text{L}}^{\text{0}}}{{\text{T}}^{\text{1}}}{{\text{A}}^{\text{1}}}{\text{](1 - }}{{\text{e}}^{{\text{ - t/RC}}}})\]
\[
{\text{(1 - }}{{\text{e}}^{{\text{ - t/RC}}}}{\text{) = [}}{{\text{M}}^{\text{0}}}{{\text{L}}^{\text{0}}}{{\text{T}}^{\text{0}}}{{\text{A}}^{\text{0}}}{\text{]}} \\
{{\text{e}}^{{\text{ - t/RC}}}}{\text{ = [}}{{\text{M}}^{\text{0}}}{{\text{L}}^{\text{0}}}{{\text{T}}^{\text{0}}}{{\text{A}}^{\text{0}}}{\text{]}} \\
\dfrac{{{\text{ - t}}}}{{{\text{RC}}}}{\text{ = [}}{{\text{M}}^{\text{0}}}{{\text{L}}^{\text{0}}}{{\text{T}}^{\text{0}}}{{\text{A}}^{\text{0}}}{\text{]}} \\
{\text{[}}{{\text{M}}^{\text{0}}}{{\text{L}}^{\text{0}}}{{\text{T}}^{\text{1}}}{{\text{A}}^{\text{0}}}{\text{] = R[}}{{\text{M}}^{ - 1}}{{\text{L}}^{ - 2}}{{\text{T}}^4}{{\text{A}}^2}{\text{]}} \\
{\text{R = [}}{{\text{M}}^1}{{\text{L}}^2}{{\text{T}}^{ - 3}}{{\text{A}}^{ - 2}}{\text{]}} \\
\]
Therefore the correct answer is option A
Note You can also do it in the way that the power of e is always going to be a dimensionless quantity. You can simply substitute t/rc to 1 and then solve the equation. Also we do not consider the negative sign if any in the equations, as we are supposed to only compare its dimensions and they will stay the same regardless of the negative sign.
Complete step-by-step solution
As given in the question,
As we know that the energy stored in the capacitor is:
\[{\text{E = }}\dfrac{{\text{1}}}{{\text{2}}}{\text{C}}{{\text{V}}^{\text{2}}}\]
\[
{\text{[}}{{\text{M}}^{\text{1}}}{{\text{L}}^{\text{2}}}{{\text{T}}^{{\text{ - 2}}}}{{\text{A}}^{\text{0}}}{\text{] = }}\dfrac{{\text{1}}}{{\text{2}}}{\text{C[}}{{\text{M}}^{\text{1}}}{{\text{L}}^{\text{2}}}{{\text{T}}^{{\text{ - 3}}}}{{\text{A}}^{{\text{ - 1}}}}{{\text{]}}^{\text{2}}} \\
{\text{C = [}}{{\text{M}}^{{\text{ - 1}}}}{{\text{L}}^{{\text{ - 2}}}}{{\text{T}}^4}{{\text{A}}^{\text{2}}}{\text{]}} \\
\]
So the value of capacitance in terms of fundamental quantities is \[{\text{[}}{{\text{M}}^{{\text{ - 1}}}}{{\text{L}}^{{\text{ - 2}}}}{{\text{T}}^{\text{2}}}{{\text{A}}^{\text{2}}}{\text{]}}\]. Substituting this in the above equation we get,
\[{\text{Q = }}{{\text{Q}}_{\text{0}}}{\text{(1 - }}{{\text{e}}^{{\text{ - t/RC}}}}{\text{)}}\]
\[{\text{[}}{{\text{M}}^{\text{0}}}{{\text{L}}^{\text{0}}}{{\text{T}}^{\text{1}}}{{\text{A}}^{\text{1}}}{\text{] = [}}{{\text{M}}^{\text{0}}}{{\text{L}}^{\text{0}}}{{\text{T}}^{\text{1}}}{{\text{A}}^{\text{1}}}{\text{](1 - }}{{\text{e}}^{{\text{ - t/RC}}}})\]
\[
{\text{(1 - }}{{\text{e}}^{{\text{ - t/RC}}}}{\text{) = [}}{{\text{M}}^{\text{0}}}{{\text{L}}^{\text{0}}}{{\text{T}}^{\text{0}}}{{\text{A}}^{\text{0}}}{\text{]}} \\
{{\text{e}}^{{\text{ - t/RC}}}}{\text{ = [}}{{\text{M}}^{\text{0}}}{{\text{L}}^{\text{0}}}{{\text{T}}^{\text{0}}}{{\text{A}}^{\text{0}}}{\text{]}} \\
\dfrac{{{\text{ - t}}}}{{{\text{RC}}}}{\text{ = [}}{{\text{M}}^{\text{0}}}{{\text{L}}^{\text{0}}}{{\text{T}}^{\text{0}}}{{\text{A}}^{\text{0}}}{\text{]}} \\
{\text{[}}{{\text{M}}^{\text{0}}}{{\text{L}}^{\text{0}}}{{\text{T}}^{\text{1}}}{{\text{A}}^{\text{0}}}{\text{] = R[}}{{\text{M}}^{ - 1}}{{\text{L}}^{ - 2}}{{\text{T}}^4}{{\text{A}}^2}{\text{]}} \\
{\text{R = [}}{{\text{M}}^1}{{\text{L}}^2}{{\text{T}}^{ - 3}}{{\text{A}}^{ - 2}}{\text{]}} \\
\]
Therefore the correct answer is option A
Note You can also do it in the way that the power of e is always going to be a dimensionless quantity. You can simply substitute t/rc to 1 and then solve the equation. Also we do not consider the negative sign if any in the equations, as we are supposed to only compare its dimensions and they will stay the same regardless of the negative sign.
Recently Updated Pages
Write a composition in approximately 450 500 words class 10 english JEE_Main
Arrange the sentences P Q R between S1 and S5 such class 10 english JEE_Main
Write an article on the need and importance of sports class 10 english JEE_Main
Name the scale on which the destructive energy of an class 11 physics JEE_Main
Choose the exact meaning of the given idiomphrase The class 9 english JEE_Main
Choose the one which best expresses the meaning of class 9 english JEE_Main
Other Pages
Dependence of intensity of gravitational field E of class 11 physics JEE_Main
The values of kinetic energy K and potential energy class 11 physics JEE_Main
What torque will increase the angular velocity of a class 11 physics JEE_Main
If a wire of resistance R is stretched to double of class 12 physics JEE_Main
In the reaction of KMnO4 with H2C204 20 mL of 02 M class 12 chemistry JEE_Main
Electric field due to uniformly charged sphere class 12 physics JEE_Main