
The dimension of R in the equation \[{\text{Q = }}{{\text{Q}}_{\text{0}}}{\text{(1 - }}{{\text{e}}^{{\text{ - t/RC}}}}{\text{)}}\]
(A) \[{\text{[}}{{\text{M}}^{\text{1}}}{{\text{L}}^{\text{2}}}{{\text{T}}^{ - 3}}{{\text{A}}^{ - 2}}{\text{]}}\]
(B) \[{\text{[}}{{\text{M}}^{\text{1}}}{{\text{L}}^{\text{2}}}{{\text{T}}^{ - 2}}{{\text{A}}^{ - 3}}{\text{]}}\]
(C) \[{\text{[}}{{\text{M}}^2}{{\text{L}}^{\text{2}}}{{\text{T}}^{ - 3}}{{\text{A}}^{ - 2}}{\text{]}}\]
(D) \[{\text{[}}{{\text{M}}^{\text{1}}}{{\text{L}}^{\text{2}}}{{\text{T}}^1}{{\text{A}}^{ - 2}}{\text{]}}\]
Answer
142.2k+ views
Hint Manipulate the equation and put R on the left side of the equation and the other terms on the right side. Then substitute the values of each quantity in terms of the fundamental quantities to get the required answer.
Complete step-by-step solution
As given in the question,
As we know that the energy stored in the capacitor is:
\[{\text{E = }}\dfrac{{\text{1}}}{{\text{2}}}{\text{C}}{{\text{V}}^{\text{2}}}\]
\[
{\text{[}}{{\text{M}}^{\text{1}}}{{\text{L}}^{\text{2}}}{{\text{T}}^{{\text{ - 2}}}}{{\text{A}}^{\text{0}}}{\text{] = }}\dfrac{{\text{1}}}{{\text{2}}}{\text{C[}}{{\text{M}}^{\text{1}}}{{\text{L}}^{\text{2}}}{{\text{T}}^{{\text{ - 3}}}}{{\text{A}}^{{\text{ - 1}}}}{{\text{]}}^{\text{2}}} \\
{\text{C = [}}{{\text{M}}^{{\text{ - 1}}}}{{\text{L}}^{{\text{ - 2}}}}{{\text{T}}^4}{{\text{A}}^{\text{2}}}{\text{]}} \\
\]
So the value of capacitance in terms of fundamental quantities is \[{\text{[}}{{\text{M}}^{{\text{ - 1}}}}{{\text{L}}^{{\text{ - 2}}}}{{\text{T}}^{\text{2}}}{{\text{A}}^{\text{2}}}{\text{]}}\]. Substituting this in the above equation we get,
\[{\text{Q = }}{{\text{Q}}_{\text{0}}}{\text{(1 - }}{{\text{e}}^{{\text{ - t/RC}}}}{\text{)}}\]
\[{\text{[}}{{\text{M}}^{\text{0}}}{{\text{L}}^{\text{0}}}{{\text{T}}^{\text{1}}}{{\text{A}}^{\text{1}}}{\text{] = [}}{{\text{M}}^{\text{0}}}{{\text{L}}^{\text{0}}}{{\text{T}}^{\text{1}}}{{\text{A}}^{\text{1}}}{\text{](1 - }}{{\text{e}}^{{\text{ - t/RC}}}})\]
\[
{\text{(1 - }}{{\text{e}}^{{\text{ - t/RC}}}}{\text{) = [}}{{\text{M}}^{\text{0}}}{{\text{L}}^{\text{0}}}{{\text{T}}^{\text{0}}}{{\text{A}}^{\text{0}}}{\text{]}} \\
{{\text{e}}^{{\text{ - t/RC}}}}{\text{ = [}}{{\text{M}}^{\text{0}}}{{\text{L}}^{\text{0}}}{{\text{T}}^{\text{0}}}{{\text{A}}^{\text{0}}}{\text{]}} \\
\dfrac{{{\text{ - t}}}}{{{\text{RC}}}}{\text{ = [}}{{\text{M}}^{\text{0}}}{{\text{L}}^{\text{0}}}{{\text{T}}^{\text{0}}}{{\text{A}}^{\text{0}}}{\text{]}} \\
{\text{[}}{{\text{M}}^{\text{0}}}{{\text{L}}^{\text{0}}}{{\text{T}}^{\text{1}}}{{\text{A}}^{\text{0}}}{\text{] = R[}}{{\text{M}}^{ - 1}}{{\text{L}}^{ - 2}}{{\text{T}}^4}{{\text{A}}^2}{\text{]}} \\
{\text{R = [}}{{\text{M}}^1}{{\text{L}}^2}{{\text{T}}^{ - 3}}{{\text{A}}^{ - 2}}{\text{]}} \\
\]
Therefore the correct answer is option A
Note You can also do it in the way that the power of e is always going to be a dimensionless quantity. You can simply substitute t/rc to 1 and then solve the equation. Also we do not consider the negative sign if any in the equations, as we are supposed to only compare its dimensions and they will stay the same regardless of the negative sign.
Complete step-by-step solution
As given in the question,
As we know that the energy stored in the capacitor is:
\[{\text{E = }}\dfrac{{\text{1}}}{{\text{2}}}{\text{C}}{{\text{V}}^{\text{2}}}\]
\[
{\text{[}}{{\text{M}}^{\text{1}}}{{\text{L}}^{\text{2}}}{{\text{T}}^{{\text{ - 2}}}}{{\text{A}}^{\text{0}}}{\text{] = }}\dfrac{{\text{1}}}{{\text{2}}}{\text{C[}}{{\text{M}}^{\text{1}}}{{\text{L}}^{\text{2}}}{{\text{T}}^{{\text{ - 3}}}}{{\text{A}}^{{\text{ - 1}}}}{{\text{]}}^{\text{2}}} \\
{\text{C = [}}{{\text{M}}^{{\text{ - 1}}}}{{\text{L}}^{{\text{ - 2}}}}{{\text{T}}^4}{{\text{A}}^{\text{2}}}{\text{]}} \\
\]
So the value of capacitance in terms of fundamental quantities is \[{\text{[}}{{\text{M}}^{{\text{ - 1}}}}{{\text{L}}^{{\text{ - 2}}}}{{\text{T}}^{\text{2}}}{{\text{A}}^{\text{2}}}{\text{]}}\]. Substituting this in the above equation we get,
\[{\text{Q = }}{{\text{Q}}_{\text{0}}}{\text{(1 - }}{{\text{e}}^{{\text{ - t/RC}}}}{\text{)}}\]
\[{\text{[}}{{\text{M}}^{\text{0}}}{{\text{L}}^{\text{0}}}{{\text{T}}^{\text{1}}}{{\text{A}}^{\text{1}}}{\text{] = [}}{{\text{M}}^{\text{0}}}{{\text{L}}^{\text{0}}}{{\text{T}}^{\text{1}}}{{\text{A}}^{\text{1}}}{\text{](1 - }}{{\text{e}}^{{\text{ - t/RC}}}})\]
\[
{\text{(1 - }}{{\text{e}}^{{\text{ - t/RC}}}}{\text{) = [}}{{\text{M}}^{\text{0}}}{{\text{L}}^{\text{0}}}{{\text{T}}^{\text{0}}}{{\text{A}}^{\text{0}}}{\text{]}} \\
{{\text{e}}^{{\text{ - t/RC}}}}{\text{ = [}}{{\text{M}}^{\text{0}}}{{\text{L}}^{\text{0}}}{{\text{T}}^{\text{0}}}{{\text{A}}^{\text{0}}}{\text{]}} \\
\dfrac{{{\text{ - t}}}}{{{\text{RC}}}}{\text{ = [}}{{\text{M}}^{\text{0}}}{{\text{L}}^{\text{0}}}{{\text{T}}^{\text{0}}}{{\text{A}}^{\text{0}}}{\text{]}} \\
{\text{[}}{{\text{M}}^{\text{0}}}{{\text{L}}^{\text{0}}}{{\text{T}}^{\text{1}}}{{\text{A}}^{\text{0}}}{\text{] = R[}}{{\text{M}}^{ - 1}}{{\text{L}}^{ - 2}}{{\text{T}}^4}{{\text{A}}^2}{\text{]}} \\
{\text{R = [}}{{\text{M}}^1}{{\text{L}}^2}{{\text{T}}^{ - 3}}{{\text{A}}^{ - 2}}{\text{]}} \\
\]
Therefore the correct answer is option A
Note You can also do it in the way that the power of e is always going to be a dimensionless quantity. You can simply substitute t/rc to 1 and then solve the equation. Also we do not consider the negative sign if any in the equations, as we are supposed to only compare its dimensions and they will stay the same regardless of the negative sign.
Recently Updated Pages
Difference Between Circuit Switching and Packet Switching

Difference Between Mass and Weight

JEE Main Participating Colleges 2024 - A Complete List of Top Colleges

JEE Main Maths Paper Pattern 2025 – Marking, Sections & Tips

Sign up for JEE Main 2025 Live Classes - Vedantu

JEE Main 2025 Helpline Numbers - Center Contact, Phone Number, Address

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Degree of Dissociation and Its Formula With Solved Example for JEE

Other Pages
Units and Measurements Class 11 Notes: CBSE Physics Chapter 1

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

Motion in a Straight Line Class 11 Notes: CBSE Physics Chapter 2

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry
