Answer
Verified
113.4k+ views
Hint Manipulate the equation and put R on the left side of the equation and the other terms on the right side. Then substitute the values of each quantity in terms of the fundamental quantities to get the required answer.
Complete step-by-step solution
As given in the question,
As we know that the energy stored in the capacitor is:
\[{\text{E = }}\dfrac{{\text{1}}}{{\text{2}}}{\text{C}}{{\text{V}}^{\text{2}}}\]
\[
{\text{[}}{{\text{M}}^{\text{1}}}{{\text{L}}^{\text{2}}}{{\text{T}}^{{\text{ - 2}}}}{{\text{A}}^{\text{0}}}{\text{] = }}\dfrac{{\text{1}}}{{\text{2}}}{\text{C[}}{{\text{M}}^{\text{1}}}{{\text{L}}^{\text{2}}}{{\text{T}}^{{\text{ - 3}}}}{{\text{A}}^{{\text{ - 1}}}}{{\text{]}}^{\text{2}}} \\
{\text{C = [}}{{\text{M}}^{{\text{ - 1}}}}{{\text{L}}^{{\text{ - 2}}}}{{\text{T}}^4}{{\text{A}}^{\text{2}}}{\text{]}} \\
\]
So the value of capacitance in terms of fundamental quantities is \[{\text{[}}{{\text{M}}^{{\text{ - 1}}}}{{\text{L}}^{{\text{ - 2}}}}{{\text{T}}^{\text{2}}}{{\text{A}}^{\text{2}}}{\text{]}}\]. Substituting this in the above equation we get,
\[{\text{Q = }}{{\text{Q}}_{\text{0}}}{\text{(1 - }}{{\text{e}}^{{\text{ - t/RC}}}}{\text{)}}\]
\[{\text{[}}{{\text{M}}^{\text{0}}}{{\text{L}}^{\text{0}}}{{\text{T}}^{\text{1}}}{{\text{A}}^{\text{1}}}{\text{] = [}}{{\text{M}}^{\text{0}}}{{\text{L}}^{\text{0}}}{{\text{T}}^{\text{1}}}{{\text{A}}^{\text{1}}}{\text{](1 - }}{{\text{e}}^{{\text{ - t/RC}}}})\]
\[
{\text{(1 - }}{{\text{e}}^{{\text{ - t/RC}}}}{\text{) = [}}{{\text{M}}^{\text{0}}}{{\text{L}}^{\text{0}}}{{\text{T}}^{\text{0}}}{{\text{A}}^{\text{0}}}{\text{]}} \\
{{\text{e}}^{{\text{ - t/RC}}}}{\text{ = [}}{{\text{M}}^{\text{0}}}{{\text{L}}^{\text{0}}}{{\text{T}}^{\text{0}}}{{\text{A}}^{\text{0}}}{\text{]}} \\
\dfrac{{{\text{ - t}}}}{{{\text{RC}}}}{\text{ = [}}{{\text{M}}^{\text{0}}}{{\text{L}}^{\text{0}}}{{\text{T}}^{\text{0}}}{{\text{A}}^{\text{0}}}{\text{]}} \\
{\text{[}}{{\text{M}}^{\text{0}}}{{\text{L}}^{\text{0}}}{{\text{T}}^{\text{1}}}{{\text{A}}^{\text{0}}}{\text{] = R[}}{{\text{M}}^{ - 1}}{{\text{L}}^{ - 2}}{{\text{T}}^4}{{\text{A}}^2}{\text{]}} \\
{\text{R = [}}{{\text{M}}^1}{{\text{L}}^2}{{\text{T}}^{ - 3}}{{\text{A}}^{ - 2}}{\text{]}} \\
\]
Therefore the correct answer is option A
Note You can also do it in the way that the power of e is always going to be a dimensionless quantity. You can simply substitute t/rc to 1 and then solve the equation. Also we do not consider the negative sign if any in the equations, as we are supposed to only compare its dimensions and they will stay the same regardless of the negative sign.
Complete step-by-step solution
As given in the question,
As we know that the energy stored in the capacitor is:
\[{\text{E = }}\dfrac{{\text{1}}}{{\text{2}}}{\text{C}}{{\text{V}}^{\text{2}}}\]
\[
{\text{[}}{{\text{M}}^{\text{1}}}{{\text{L}}^{\text{2}}}{{\text{T}}^{{\text{ - 2}}}}{{\text{A}}^{\text{0}}}{\text{] = }}\dfrac{{\text{1}}}{{\text{2}}}{\text{C[}}{{\text{M}}^{\text{1}}}{{\text{L}}^{\text{2}}}{{\text{T}}^{{\text{ - 3}}}}{{\text{A}}^{{\text{ - 1}}}}{{\text{]}}^{\text{2}}} \\
{\text{C = [}}{{\text{M}}^{{\text{ - 1}}}}{{\text{L}}^{{\text{ - 2}}}}{{\text{T}}^4}{{\text{A}}^{\text{2}}}{\text{]}} \\
\]
So the value of capacitance in terms of fundamental quantities is \[{\text{[}}{{\text{M}}^{{\text{ - 1}}}}{{\text{L}}^{{\text{ - 2}}}}{{\text{T}}^{\text{2}}}{{\text{A}}^{\text{2}}}{\text{]}}\]. Substituting this in the above equation we get,
\[{\text{Q = }}{{\text{Q}}_{\text{0}}}{\text{(1 - }}{{\text{e}}^{{\text{ - t/RC}}}}{\text{)}}\]
\[{\text{[}}{{\text{M}}^{\text{0}}}{{\text{L}}^{\text{0}}}{{\text{T}}^{\text{1}}}{{\text{A}}^{\text{1}}}{\text{] = [}}{{\text{M}}^{\text{0}}}{{\text{L}}^{\text{0}}}{{\text{T}}^{\text{1}}}{{\text{A}}^{\text{1}}}{\text{](1 - }}{{\text{e}}^{{\text{ - t/RC}}}})\]
\[
{\text{(1 - }}{{\text{e}}^{{\text{ - t/RC}}}}{\text{) = [}}{{\text{M}}^{\text{0}}}{{\text{L}}^{\text{0}}}{{\text{T}}^{\text{0}}}{{\text{A}}^{\text{0}}}{\text{]}} \\
{{\text{e}}^{{\text{ - t/RC}}}}{\text{ = [}}{{\text{M}}^{\text{0}}}{{\text{L}}^{\text{0}}}{{\text{T}}^{\text{0}}}{{\text{A}}^{\text{0}}}{\text{]}} \\
\dfrac{{{\text{ - t}}}}{{{\text{RC}}}}{\text{ = [}}{{\text{M}}^{\text{0}}}{{\text{L}}^{\text{0}}}{{\text{T}}^{\text{0}}}{{\text{A}}^{\text{0}}}{\text{]}} \\
{\text{[}}{{\text{M}}^{\text{0}}}{{\text{L}}^{\text{0}}}{{\text{T}}^{\text{1}}}{{\text{A}}^{\text{0}}}{\text{] = R[}}{{\text{M}}^{ - 1}}{{\text{L}}^{ - 2}}{{\text{T}}^4}{{\text{A}}^2}{\text{]}} \\
{\text{R = [}}{{\text{M}}^1}{{\text{L}}^2}{{\text{T}}^{ - 3}}{{\text{A}}^{ - 2}}{\text{]}} \\
\]
Therefore the correct answer is option A
Note You can also do it in the way that the power of e is always going to be a dimensionless quantity. You can simply substitute t/rc to 1 and then solve the equation. Also we do not consider the negative sign if any in the equations, as we are supposed to only compare its dimensions and they will stay the same regardless of the negative sign.
Recently Updated Pages
JEE Main Login 2025 - Step-by-Step Explanation
JEE Main 2025 Exam Date: Check Important Dates and Schedule
JEE Main 2025 City Intimation Slip: Downloading Link and Exam Centres
JEE Main 2025 Application Form Session 1 Out - Apply Now
JEE Main 2025 Registration Ends Today: Apply Now for January Session
JEE Main OMR Sheet 2025
Trending doubts
JEE Main 2025: Application Form (Out), Exam Dates (Released), Eligibility & More
JEE Main Chemistry Question Paper with Answer Keys and Solutions
Angle of Deviation in Prism - Important Formula with Solved Problems for JEE
Average and RMS Value for JEE Main
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
Degree of Dissociation and Its Formula With Solved Example for JEE
Other Pages
NCERT Solutions for Class 11 Physics Chapter 7 Gravitation
NCERT Solutions for Class 11 Physics Chapter 9 Mechanical Properties of Fluids
Units and Measurements Class 11 Notes - CBSE Physics Chapter 1
NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements
NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line
Laws of Motion Class 11 Notes CBSE Physics Chapter 4 (Free PDF Download)