
The dimension of R in the equation \[{\text{Q = }}{{\text{Q}}_{\text{0}}}{\text{(1 - }}{{\text{e}}^{{\text{ - t/RC}}}}{\text{)}}\]
(A) \[{\text{[}}{{\text{M}}^{\text{1}}}{{\text{L}}^{\text{2}}}{{\text{T}}^{ - 3}}{{\text{A}}^{ - 2}}{\text{]}}\]
(B) \[{\text{[}}{{\text{M}}^{\text{1}}}{{\text{L}}^{\text{2}}}{{\text{T}}^{ - 2}}{{\text{A}}^{ - 3}}{\text{]}}\]
(C) \[{\text{[}}{{\text{M}}^2}{{\text{L}}^{\text{2}}}{{\text{T}}^{ - 3}}{{\text{A}}^{ - 2}}{\text{]}}\]
(D) \[{\text{[}}{{\text{M}}^{\text{1}}}{{\text{L}}^{\text{2}}}{{\text{T}}^1}{{\text{A}}^{ - 2}}{\text{]}}\]
Answer
128.1k+ views
Hint Manipulate the equation and put R on the left side of the equation and the other terms on the right side. Then substitute the values of each quantity in terms of the fundamental quantities to get the required answer.
Complete step-by-step solution
As given in the question,
As we know that the energy stored in the capacitor is:
\[{\text{E = }}\dfrac{{\text{1}}}{{\text{2}}}{\text{C}}{{\text{V}}^{\text{2}}}\]
\[
{\text{[}}{{\text{M}}^{\text{1}}}{{\text{L}}^{\text{2}}}{{\text{T}}^{{\text{ - 2}}}}{{\text{A}}^{\text{0}}}{\text{] = }}\dfrac{{\text{1}}}{{\text{2}}}{\text{C[}}{{\text{M}}^{\text{1}}}{{\text{L}}^{\text{2}}}{{\text{T}}^{{\text{ - 3}}}}{{\text{A}}^{{\text{ - 1}}}}{{\text{]}}^{\text{2}}} \\
{\text{C = [}}{{\text{M}}^{{\text{ - 1}}}}{{\text{L}}^{{\text{ - 2}}}}{{\text{T}}^4}{{\text{A}}^{\text{2}}}{\text{]}} \\
\]
So the value of capacitance in terms of fundamental quantities is \[{\text{[}}{{\text{M}}^{{\text{ - 1}}}}{{\text{L}}^{{\text{ - 2}}}}{{\text{T}}^{\text{2}}}{{\text{A}}^{\text{2}}}{\text{]}}\]. Substituting this in the above equation we get,
\[{\text{Q = }}{{\text{Q}}_{\text{0}}}{\text{(1 - }}{{\text{e}}^{{\text{ - t/RC}}}}{\text{)}}\]
\[{\text{[}}{{\text{M}}^{\text{0}}}{{\text{L}}^{\text{0}}}{{\text{T}}^{\text{1}}}{{\text{A}}^{\text{1}}}{\text{] = [}}{{\text{M}}^{\text{0}}}{{\text{L}}^{\text{0}}}{{\text{T}}^{\text{1}}}{{\text{A}}^{\text{1}}}{\text{](1 - }}{{\text{e}}^{{\text{ - t/RC}}}})\]
\[
{\text{(1 - }}{{\text{e}}^{{\text{ - t/RC}}}}{\text{) = [}}{{\text{M}}^{\text{0}}}{{\text{L}}^{\text{0}}}{{\text{T}}^{\text{0}}}{{\text{A}}^{\text{0}}}{\text{]}} \\
{{\text{e}}^{{\text{ - t/RC}}}}{\text{ = [}}{{\text{M}}^{\text{0}}}{{\text{L}}^{\text{0}}}{{\text{T}}^{\text{0}}}{{\text{A}}^{\text{0}}}{\text{]}} \\
\dfrac{{{\text{ - t}}}}{{{\text{RC}}}}{\text{ = [}}{{\text{M}}^{\text{0}}}{{\text{L}}^{\text{0}}}{{\text{T}}^{\text{0}}}{{\text{A}}^{\text{0}}}{\text{]}} \\
{\text{[}}{{\text{M}}^{\text{0}}}{{\text{L}}^{\text{0}}}{{\text{T}}^{\text{1}}}{{\text{A}}^{\text{0}}}{\text{] = R[}}{{\text{M}}^{ - 1}}{{\text{L}}^{ - 2}}{{\text{T}}^4}{{\text{A}}^2}{\text{]}} \\
{\text{R = [}}{{\text{M}}^1}{{\text{L}}^2}{{\text{T}}^{ - 3}}{{\text{A}}^{ - 2}}{\text{]}} \\
\]
Therefore the correct answer is option A
Note You can also do it in the way that the power of e is always going to be a dimensionless quantity. You can simply substitute t/rc to 1 and then solve the equation. Also we do not consider the negative sign if any in the equations, as we are supposed to only compare its dimensions and they will stay the same regardless of the negative sign.
Complete step-by-step solution
As given in the question,
As we know that the energy stored in the capacitor is:
\[{\text{E = }}\dfrac{{\text{1}}}{{\text{2}}}{\text{C}}{{\text{V}}^{\text{2}}}\]
\[
{\text{[}}{{\text{M}}^{\text{1}}}{{\text{L}}^{\text{2}}}{{\text{T}}^{{\text{ - 2}}}}{{\text{A}}^{\text{0}}}{\text{] = }}\dfrac{{\text{1}}}{{\text{2}}}{\text{C[}}{{\text{M}}^{\text{1}}}{{\text{L}}^{\text{2}}}{{\text{T}}^{{\text{ - 3}}}}{{\text{A}}^{{\text{ - 1}}}}{{\text{]}}^{\text{2}}} \\
{\text{C = [}}{{\text{M}}^{{\text{ - 1}}}}{{\text{L}}^{{\text{ - 2}}}}{{\text{T}}^4}{{\text{A}}^{\text{2}}}{\text{]}} \\
\]
So the value of capacitance in terms of fundamental quantities is \[{\text{[}}{{\text{M}}^{{\text{ - 1}}}}{{\text{L}}^{{\text{ - 2}}}}{{\text{T}}^{\text{2}}}{{\text{A}}^{\text{2}}}{\text{]}}\]. Substituting this in the above equation we get,
\[{\text{Q = }}{{\text{Q}}_{\text{0}}}{\text{(1 - }}{{\text{e}}^{{\text{ - t/RC}}}}{\text{)}}\]
\[{\text{[}}{{\text{M}}^{\text{0}}}{{\text{L}}^{\text{0}}}{{\text{T}}^{\text{1}}}{{\text{A}}^{\text{1}}}{\text{] = [}}{{\text{M}}^{\text{0}}}{{\text{L}}^{\text{0}}}{{\text{T}}^{\text{1}}}{{\text{A}}^{\text{1}}}{\text{](1 - }}{{\text{e}}^{{\text{ - t/RC}}}})\]
\[
{\text{(1 - }}{{\text{e}}^{{\text{ - t/RC}}}}{\text{) = [}}{{\text{M}}^{\text{0}}}{{\text{L}}^{\text{0}}}{{\text{T}}^{\text{0}}}{{\text{A}}^{\text{0}}}{\text{]}} \\
{{\text{e}}^{{\text{ - t/RC}}}}{\text{ = [}}{{\text{M}}^{\text{0}}}{{\text{L}}^{\text{0}}}{{\text{T}}^{\text{0}}}{{\text{A}}^{\text{0}}}{\text{]}} \\
\dfrac{{{\text{ - t}}}}{{{\text{RC}}}}{\text{ = [}}{{\text{M}}^{\text{0}}}{{\text{L}}^{\text{0}}}{{\text{T}}^{\text{0}}}{{\text{A}}^{\text{0}}}{\text{]}} \\
{\text{[}}{{\text{M}}^{\text{0}}}{{\text{L}}^{\text{0}}}{{\text{T}}^{\text{1}}}{{\text{A}}^{\text{0}}}{\text{] = R[}}{{\text{M}}^{ - 1}}{{\text{L}}^{ - 2}}{{\text{T}}^4}{{\text{A}}^2}{\text{]}} \\
{\text{R = [}}{{\text{M}}^1}{{\text{L}}^2}{{\text{T}}^{ - 3}}{{\text{A}}^{ - 2}}{\text{]}} \\
\]
Therefore the correct answer is option A
Note You can also do it in the way that the power of e is always going to be a dimensionless quantity. You can simply substitute t/rc to 1 and then solve the equation. Also we do not consider the negative sign if any in the equations, as we are supposed to only compare its dimensions and they will stay the same regardless of the negative sign.
Recently Updated Pages
JEE Main 2025 - Session 2 Registration Open | Exam Dates, Answer Key, PDF

Difference Between Vapor and Gas: JEE Main 2024

Area of an Octagon Formula - Explanation, and FAQs

Difference Between Solute and Solvent: JEE Main 2024

Absolute Pressure Formula - Explanation, and FAQs

Carbon Dioxide Formula - Definition, Uses and FAQs

Trending doubts
JEE Main Login 2045: Step-by-Step Instructions and Details

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Keys & Solutions

JEE Main Participating Colleges 2024 - A Complete List of Top Colleges

JEE Main Course 2025: Get All the Relevant Details

JEE Main Chemistry Question Paper with Answer Keys and Solutions

Other Pages
JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

Oscillation Class 11 Notes: CBSE Physics Chapter 13

NCERT Solutions for Class 11 Physics Chapter 10 Thermal Properties of Matter

NCERT Solutions for Class 11 Physics Chapter 8 Mechanical Properties of Solids

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

NCERT Solutions for Class 11 Physics Chapter 14 Waves
