Answer
Verified
112.8k+ views
Hint The time taken for its amplitude of vibration to drop to half for its initial value is close to can be determined by using the formula of the simple harmonic equation of the time, then the time taken for its amplitude of vibration can be determined.
Useful formula
The formula of the simple harmonic equation of the time,
$A = {A_0}{e^{ - kt}}$
Where, $A$ is the amount of the vibration, ${A_0}$ is the initial amount of the vibration and $t$ is the time taken.
Complete step by step solution
Given that,
The displacement of a damped harmonic oscillator is given by, $x\left( t \right) = {e^{ - 01.1t}}\cos \left( {10\pi t + \phi } \right)$.
From the given equation, then the value of the $k$ is $0.1$,
Now,
The formula of the simple harmonic equation of the time,
$A = {A_0}{e^{ - kt}}$
By substituting the value of the $k$ in the above equation, then the above equation is written as,
$A = {A_0}{e^{ - 0.1t}}$
Now, the above equation is also written as,
$A = {A_0}{e^{ - 0.1t}} = \dfrac{{{A_0}}}{2}$
By cancelling the same terms in the above equation, then the above equation is written as,
${e^{ - 0.1t}} = \dfrac{1}{2}$
To remove the exponential term in the LHS of the above equation, then the above equation is written as,
$\ln 2 = 0.1t$
By taking the $\ln $ in the LHS of the above equation, then the above equation is written as,
$0.693 = 0.1t$
By rearranging the terms in the above equation, then the above equation is written as,
$t = \dfrac{{0.693}}{{0.1}}$
By dividing the terms in the above equation, then the above equation is written as,
$t = 6.93\,\sec $
Then the above equation is also written as,
$t = 7\,\sec $
Hence, the option (B) is the correct answer.
Note In physical calculation, there are two types of the logarithmic, one type of logarithmic is $\log $ and the other type of the logarithmic is $\ln $. So, during the calculation, the students must give concentration in the logarithmic step. To remove the exponential term, $\ln $ is used.
Useful formula
The formula of the simple harmonic equation of the time,
$A = {A_0}{e^{ - kt}}$
Where, $A$ is the amount of the vibration, ${A_0}$ is the initial amount of the vibration and $t$ is the time taken.
Complete step by step solution
Given that,
The displacement of a damped harmonic oscillator is given by, $x\left( t \right) = {e^{ - 01.1t}}\cos \left( {10\pi t + \phi } \right)$.
From the given equation, then the value of the $k$ is $0.1$,
Now,
The formula of the simple harmonic equation of the time,
$A = {A_0}{e^{ - kt}}$
By substituting the value of the $k$ in the above equation, then the above equation is written as,
$A = {A_0}{e^{ - 0.1t}}$
Now, the above equation is also written as,
$A = {A_0}{e^{ - 0.1t}} = \dfrac{{{A_0}}}{2}$
By cancelling the same terms in the above equation, then the above equation is written as,
${e^{ - 0.1t}} = \dfrac{1}{2}$
To remove the exponential term in the LHS of the above equation, then the above equation is written as,
$\ln 2 = 0.1t$
By taking the $\ln $ in the LHS of the above equation, then the above equation is written as,
$0.693 = 0.1t$
By rearranging the terms in the above equation, then the above equation is written as,
$t = \dfrac{{0.693}}{{0.1}}$
By dividing the terms in the above equation, then the above equation is written as,
$t = 6.93\,\sec $
Then the above equation is also written as,
$t = 7\,\sec $
Hence, the option (B) is the correct answer.
Note In physical calculation, there are two types of the logarithmic, one type of logarithmic is $\log $ and the other type of the logarithmic is $\ln $. So, during the calculation, the students must give concentration in the logarithmic step. To remove the exponential term, $\ln $ is used.
Recently Updated Pages
Uniform Acceleration - Definition, Equation, Examples, and FAQs
JEE Main 2021 July 25 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 20 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key
JEE Main 2023 (January 30th Shift 1) Physics Question Paper with Answer Key
Trending doubts
JEE Main 2025: Application Form (Out), Exam Dates (Released), Eligibility & More
JEE Main Chemistry Question Paper with Answer Keys and Solutions
Class 11 JEE Main Physics Mock Test 2025
Angle of Deviation in Prism - Important Formula with Solved Problems for JEE
Average and RMS Value for JEE Main
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
Other Pages
NCERT Solutions for Class 11 Physics Chapter 7 Gravitation
NCERT Solutions for Class 11 Physics Chapter 9 Mechanical Properties of Fluids
Units and Measurements Class 11 Notes - CBSE Physics Chapter 1
NCERT Solutions for Class 11 Physics Chapter 5 Work Energy and Power
NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements
NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line