
The displacement of a particle varies according to the relation . the amplitude of the particle is:
(A)
(B)
(C)
(D)
Answer
147k+ views
1 likes
Hint: - In the case of simple harmonic motion there will be a mean position and two extreme positions. The pendulum performs the SHM with respect to the mean position and within the range of two extreme positions. Generally, simple harmonic motions are denoted with the sinusoidal or cosecant functions.
Formula used:
The equation of SHM is
,
where is the amplitude,
is the displacement,
is the angular frequency,
is the time,
is the phase difference.
Complete step-by-step solution:
We have to calculate the amplitude of the particle from the given expression. The given expression is . This gives the relation between displacement, amplitude, and the angular velocity.
It is given that,
Divide and multiply the equation by we get,
Applying the trigonometric equation,
..............
Comparing the equation with,
Therefore, the amplitude of the particle is
Hence, the correct answer is option (C) .
Additional information: It is the periodic motion of a point along a straight line such that its acceleration is always towards a fixed point and it is directly proportional to its distance from that point. It is essentially repetitive movement back and forth of an object through an equilibrium or central position such that maximum displacement on one side of its position is equal to maximum displacement on the other side.
The time period is the time taken for an object to complete one cycle of its periodic motion, such as time taken by a pendulum to create a full back and forth swing. The total of the average acceleration is the half time period for equilibrium position in a simple harmonic motion.
Note: The simple harmonic motion is a special type of periodic motion where the restoring force applied on the object is directly proportional to the magnitude of displacement and acts towards the object’s equilibrium position. Moreover, all simple harmonic motions are periodic motions but all periodic motions are not simple harmonic motions.
Formula used:
The equation of SHM is
where
Complete step-by-step solution:
We have to calculate the amplitude of the particle from the given expression. The given expression is
It is given that,
Divide and multiply the equation by
Applying the trigonometric equation,
Comparing the equation
Therefore, the amplitude of the particle is
Hence, the correct answer is option (C)
Additional information: It is the periodic motion of a point along a straight line such that its acceleration is always towards a fixed point and it is directly proportional to its distance from that point. It is essentially repetitive movement back and forth of an object through an equilibrium or central position such that maximum displacement on one side of its position is equal to maximum displacement on the other side.
The time period is the time taken for an object to complete one cycle of its periodic motion, such as time taken by a pendulum to create a full back and forth swing. The total of the average acceleration is the half time period for equilibrium position in a simple harmonic motion.
Note: The simple harmonic motion is a special type of periodic motion where the restoring force applied on the object is directly proportional to the magnitude of displacement and acts towards the object’s equilibrium position. Moreover, all simple harmonic motions are periodic motions but all periodic motions are not simple harmonic motions.
Latest Vedantu courses for you
Grade 10 | MAHARASHTRABOARD | SCHOOL | English
Vedantu 10 Maharashtra Pro Lite (2025-26)
School Full course for MAHARASHTRABOARD students
₹33,300 per year
EMI starts from ₹2,775 per month
Recently Updated Pages
How to find Oxidation Number - Important Concepts for JEE

How Electromagnetic Waves are Formed - Important Concepts for JEE

Electrical Resistance - Important Concepts and Tips for JEE

Average Atomic Mass - Important Concepts and Tips for JEE

Chemical Equation - Important Concepts and Tips for JEE

Concept of CP and CV of Gas - Important Concepts and Tips for JEE

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JEE Main Participating Colleges 2024 - A Complete List of Top Colleges

Degree of Dissociation and Its Formula With Solved Example for JEE

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

Units and Measurements Class 11 Notes: CBSE Physics Chapter 1

NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements

Motion in a Straight Line Class 11 Notes: CBSE Physics Chapter 2

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry
