The distance of point of a compound pendulum from its center of gravity is ${\text{ l, }}$ the time period of oscillation relative to this point is ${\text{ T}}{\text{. }}$ If ${\text{ g = }}{\pi ^2},{\text{ }}$ the relation between ${\text{ l }}$ and ${\text{ T }}$ will be:
A) ${l^2} - \left[ {\dfrac{{{T^2}}}{4}} \right]l + {k^2} = 0$
B) ${l^2} + \left[ {\dfrac{{{T^2}}}{4}} \right]l + {k^2} = 0$
C) ${l^2} - \left[ {\dfrac{{{T^2}}}{4}} \right]l - {k^2} = 0$
D) ${l^2} + \left[ {\dfrac{{{T^2}}}{4}} \right]l - {k^2} = 0$
Answer
Verified
120k+ views
Hint: A rigid body capable of oscillating about a horizontal axis passing through the pendulum is called a compound pendulum. If the pendulum rotates about a fixed point the distance between that fixed point and the center of gravity is the length of the pendulum. In this question, we have to find the relation between the length and the time period of oscillation.
Formula used:
$\tau = I\alpha $
Where, ${\text{ }}\tau {\text{ }}$is the torque of the pendulum, ${\text{ I }}$ is the moment of inertia of the pendulum and ${\text{ }}\alpha {\text{ }}$stands for the angular acceleration of the pendulum
$T = \dfrac{{2\pi }}{\omega }$
Where, ${\text{ T }}$ stands for the time period of the pendulum, ${\text{ }}\omega {\text{ }}$ stands for the angular velocity of the pendulum and ${\text{ 2}}\pi {\text{ }}$ is a constant
$\alpha = {\omega ^2}x$
Where ${\text{ }}\alpha {\text{ }}$ stands for angular acceleration, ${\text{ }}\omega {\text{ }}$ stands for angular velocity and ${\text{ x }}$stands for the displacement of the pendulum.
Complete step by step solution:
Consider the compound pendulum as shown in the figure:
The weight${\text{ mg }}$is resolved into two components ${\text{ mg sin}}\theta $and${\text{ mg cos}}\theta {\text{ }}$.
The torque of the pendulum \[{\text{ }}\tau = mgl\sin \theta \]
When${\text{ }}\theta \to 0 \Rightarrow \sin \theta \approx \theta $
This implies
${\text{ }}\tau = mgl\theta $
We know that the torque,
${\text{ }}\tau {\text{ = I}}\alpha $
The length of the pendulum is${\text{ l }}$and the radius of gyration is given by${\text{ k }}$then the moment of Inertia ${\text{ }}\left( I \right){\text{ }}$of the pendulum is given by,
$I = m{k^2} + m{l^2}$
From equations and, we get
$\tau = mgl\theta = I\alpha $
From this equation we get
$\alpha = \dfrac{{mgl\theta }}{I}$ Substituting in equation
$\alpha = \dfrac{{mgl\theta }}{{m{k^2} + m{l^2}}} = \dfrac{{mgl\theta }}{{m({k^2} + {l^2})}} = \dfrac{{gl\theta }}{{({k^2} + {l^2})}}$
We know that the angular acceleration is also given by${\text{ }}\alpha = {\omega ^2}x$
Here the displacement${\text{ x }}$is the angular displacement${\text{ }}\theta {\text{ }}$
Therefore, the angular acceleration is,
$\alpha = {\omega ^2}\theta $
Equating and we get
${\omega ^2} = \dfrac{{gl}}{{({k^2} + {l^2})}}$
$\omega = \sqrt {\dfrac{{gl}}{{({l^2} + {k^2})}}} $
The time period of the pendulum is given by,
$T = \dfrac{{2\pi }}{\omega }$
Substituting the value of${\text{ }}\omega {\text{ }}$in, we get
$T = 2\pi \sqrt {\dfrac{{{l^2} + {k^2}}}{{gl}}} {\text{ }}$
It is given that,${\text{ g = }}{\pi ^2}$
Substituting this value we get
$T = 2\pi \sqrt {\dfrac{{{l^2} + {k^2}}}{{{\pi ^2}l}}} = 2\sqrt {\dfrac{{{l^2} + {k^2}}}{l}} $
Squaring both sides we get
${T^2} = 4\dfrac{{{l^2} + {k^2}}}{l}$
Rearranging the equation we get,
$ \dfrac{{{T^2}}}{4} = \dfrac{{{l^2} + {k^2}}}{l} $
$\left( {\dfrac{{{T^2}}}{4}} \right)l = {l^2} + {k^2} $
${l^2} - \left( {\dfrac{{{T^2}}}{4}} \right)l - {k^2} = 0 $
Therefore, The answer is Option (C) : ${l^2} - \left[ {\dfrac{{{T^2}}}{4}} \right]l - {k^2} = 0.$
Note: The radius of gyration of a body about an axis is defined as the radial distance to a point that would have a moment of inertia same as the distribution of mass of the body. The major difference between a simple pendulum and a compound pendulum is that in a simple pendulum the length of the pendulum i.e. the distance between the center of mass and the fixed point about which the pendulum is oscillating will be larger compared to that of a compound pendulum.
Formula used:
$\tau = I\alpha $
Where, ${\text{ }}\tau {\text{ }}$is the torque of the pendulum, ${\text{ I }}$ is the moment of inertia of the pendulum and ${\text{ }}\alpha {\text{ }}$stands for the angular acceleration of the pendulum
$T = \dfrac{{2\pi }}{\omega }$
Where, ${\text{ T }}$ stands for the time period of the pendulum, ${\text{ }}\omega {\text{ }}$ stands for the angular velocity of the pendulum and ${\text{ 2}}\pi {\text{ }}$ is a constant
$\alpha = {\omega ^2}x$
Where ${\text{ }}\alpha {\text{ }}$ stands for angular acceleration, ${\text{ }}\omega {\text{ }}$ stands for angular velocity and ${\text{ x }}$stands for the displacement of the pendulum.
Complete step by step solution:
Consider the compound pendulum as shown in the figure:
The weight${\text{ mg }}$is resolved into two components ${\text{ mg sin}}\theta $and${\text{ mg cos}}\theta {\text{ }}$.
The torque of the pendulum \[{\text{ }}\tau = mgl\sin \theta \]
When${\text{ }}\theta \to 0 \Rightarrow \sin \theta \approx \theta $
This implies
${\text{ }}\tau = mgl\theta $
We know that the torque,
${\text{ }}\tau {\text{ = I}}\alpha $
The length of the pendulum is${\text{ l }}$and the radius of gyration is given by${\text{ k }}$then the moment of Inertia ${\text{ }}\left( I \right){\text{ }}$of the pendulum is given by,
$I = m{k^2} + m{l^2}$
From equations and, we get
$\tau = mgl\theta = I\alpha $
From this equation we get
$\alpha = \dfrac{{mgl\theta }}{I}$ Substituting in equation
$\alpha = \dfrac{{mgl\theta }}{{m{k^2} + m{l^2}}} = \dfrac{{mgl\theta }}{{m({k^2} + {l^2})}} = \dfrac{{gl\theta }}{{({k^2} + {l^2})}}$
We know that the angular acceleration is also given by${\text{ }}\alpha = {\omega ^2}x$
Here the displacement${\text{ x }}$is the angular displacement${\text{ }}\theta {\text{ }}$
Therefore, the angular acceleration is,
$\alpha = {\omega ^2}\theta $
Equating and we get
${\omega ^2} = \dfrac{{gl}}{{({k^2} + {l^2})}}$
$\omega = \sqrt {\dfrac{{gl}}{{({l^2} + {k^2})}}} $
The time period of the pendulum is given by,
$T = \dfrac{{2\pi }}{\omega }$
Substituting the value of${\text{ }}\omega {\text{ }}$in, we get
$T = 2\pi \sqrt {\dfrac{{{l^2} + {k^2}}}{{gl}}} {\text{ }}$
It is given that,${\text{ g = }}{\pi ^2}$
Substituting this value we get
$T = 2\pi \sqrt {\dfrac{{{l^2} + {k^2}}}{{{\pi ^2}l}}} = 2\sqrt {\dfrac{{{l^2} + {k^2}}}{l}} $
Squaring both sides we get
${T^2} = 4\dfrac{{{l^2} + {k^2}}}{l}$
Rearranging the equation we get,
$ \dfrac{{{T^2}}}{4} = \dfrac{{{l^2} + {k^2}}}{l} $
$\left( {\dfrac{{{T^2}}}{4}} \right)l = {l^2} + {k^2} $
${l^2} - \left( {\dfrac{{{T^2}}}{4}} \right)l - {k^2} = 0 $
Therefore, The answer is Option (C) : ${l^2} - \left[ {\dfrac{{{T^2}}}{4}} \right]l - {k^2} = 0.$
Note: The radius of gyration of a body about an axis is defined as the radial distance to a point that would have a moment of inertia same as the distribution of mass of the body. The major difference between a simple pendulum and a compound pendulum is that in a simple pendulum the length of the pendulum i.e. the distance between the center of mass and the fixed point about which the pendulum is oscillating will be larger compared to that of a compound pendulum.
Recently Updated Pages
Difference Between Circuit Switching and Packet Switching
Difference Between Mass and Weight
JEE Main Participating Colleges 2024 - A Complete List of Top Colleges
JEE Main Maths Paper Pattern 2025 – Marking, Sections & Tips
Sign up for JEE Main 2025 Live Classes - Vedantu
JEE Main 2025 Helpline Numbers - Center Contact, Phone Number, Address
Trending doubts
JEE Mains 2025: Check Important Dates, Syllabus, Exam Pattern, Fee and Updates
JEE Main Login 2045: Step-by-Step Instructions and Details
Class 11 JEE Main Physics Mock Test 2025
JEE Main Chemistry Question Paper with Answer Keys and Solutions
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking
JEE Main Chemistry Exam Pattern 2025
Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs
NCERT Solutions for Class 11 Physics Chapter 7 Gravitation
NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements
NCERT Solutions for Class 11 Physics Chapter 9 Mechanical Properties of Fluids
Units and Measurements Class 11 Notes - CBSE Physics Chapter 1
NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line