
The electric dipole of moment \[\begin{array}{*{20}{c}}
{\overrightarrow p }& = &{( - \widehat i - 3\widehat j + 2\widehat k) \times {{10}^{ - 29}}Cm}
\end{array}\]is at the origin (0,0,0). The electric field due to this dipole at \[\begin{array}{*{20}{c}}
{\overrightarrow r }& = &{(\widehat i + 3\widehat j + 5\widehat k)}
\end{array}\]is parallel to [Note that \[\begin{array}{*{20}{c}}
{\overrightarrow {r.} \overrightarrow p }& = &0
\end{array}\]]
A) \[\widehat i - 3\widehat j - 2\widehat k\]
B) \[ - \widehat i - 3\widehat j + 2\widehat k\]
C ) \[\widehat i + 3\widehat j - 2\widehat k\]
D) \[ - \widehat i + 3\widehat j - 2\widehat k\]
Answer
147k+ views
Hint: In this question, we have given a condition:
(\[\begin{array}{*{20}{c}}
{\overrightarrow {r.} \overrightarrow p }& = &0
\end{array}\]),
Therefore, According to the given condition we will get to know that the \[\overrightarrow p \]and position vector \[\overrightarrow r \]will be perpendicular to each other. Due to the opposite direction of the electric field to the electric dipole moment, the electric field vector will be the same as the electric dipole moment but in a negative sign. Hence, we will get a suitable answer.
Complete answer:
Basically, the direction of the electric dipole moment is from negative charge to positive charge while the direction of the electric field is from positive charge to negative charge. In other words, we can say that the direction of the electric field is opposite to the electric dipole moment. Hence, as per the given note \[\begin{array}{*{20}{c}}
{\overrightarrow {r.} \overrightarrow p }& = &0
\end{array}\], we can conclude that the electric dipole moment and electric field will be perpendicular to each other but will be in opposite directions.
Electric dipole moment vector and position vector are given,
\[\begin{array}{*{20}{c}}
{ \Rightarrow \overrightarrow p }& = &{( - \widehat i - 3\widehat j + 2\widehat k) \times {{10}^{ - 29}}Cm}
\end{array}\] and position vector \[\begin{array}{*{20}{c}}
{\overrightarrow r }& = &{(\widehat i + 3\widehat j + 5\widehat k)}
\end{array}\]
Therefore, As per given the condition, we can write that
\[\begin{array}{*{20}{c}}
{ \Rightarrow \overrightarrow {r.} \overrightarrow p }& = &0
\end{array}\]
The \[\overrightarrow p \]and \[\overrightarrow r \]are perpendicular to each other. It means that the electric field will also be perpendicular to the position vector \[\overrightarrow r \].
\[\begin{array}{*{20}{c}}
{ \Rightarrow (\widehat i + 3\widehat j + 5\widehat k).( - \widehat i - 3\widehat j + 2\widehat k)}& = &0
\end{array}\]
Now, we know that the electric field is directly proportional to the electric dipole moment, but will be in the opposite direction. There will be a constant. Whose value will be greater than 0.
\[\begin{array}{*{20}{c}}
{ \Rightarrow \overrightarrow E }& = &{ - \lambda \overrightarrow p }
\end{array}\]
Here, a negative sign indicates that the electric field is in the opposite direction to the electric dipole moment. Therefore,
\[\begin{array}{*{20}{c}}
{ \Rightarrow \overrightarrow E }& = &{ - \lambda ( - \widehat i - 3\widehat j + 2\widehat k) \times {{10}^{ - 29}}}
\end{array}\]
\[\begin{array}{*{20}{c}}
{ \Rightarrow \overrightarrow E }& = &{\lambda (\widehat i + 3\widehat j - 2\widehat k) \times {{10}^{ - 29}}}
\end{array}\]
Therefore,\[\overrightarrow E \]will be parallel to the \[(\widehat i + 3\widehat j - 2\widehat k)\]
Now, the final answer is \[(\widehat i + 3\widehat j - 2\widehat k)\]. So, the correct option is C.
Note: In this question, the first point is to keep in mind that the \[\begin{array}{*{20}{c}}
\lambda & > &0
\end{array}\], Where, \[\lambda \]is constant which is the replacement of the proportionality sign.
(\[\begin{array}{*{20}{c}}
{\overrightarrow {r.} \overrightarrow p }& = &0
\end{array}\]),
Therefore, According to the given condition we will get to know that the \[\overrightarrow p \]and position vector \[\overrightarrow r \]will be perpendicular to each other. Due to the opposite direction of the electric field to the electric dipole moment, the electric field vector will be the same as the electric dipole moment but in a negative sign. Hence, we will get a suitable answer.
Complete answer:
Basically, the direction of the electric dipole moment is from negative charge to positive charge while the direction of the electric field is from positive charge to negative charge. In other words, we can say that the direction of the electric field is opposite to the electric dipole moment. Hence, as per the given note \[\begin{array}{*{20}{c}}
{\overrightarrow {r.} \overrightarrow p }& = &0
\end{array}\], we can conclude that the electric dipole moment and electric field will be perpendicular to each other but will be in opposite directions.
Electric dipole moment vector and position vector are given,
\[\begin{array}{*{20}{c}}
{ \Rightarrow \overrightarrow p }& = &{( - \widehat i - 3\widehat j + 2\widehat k) \times {{10}^{ - 29}}Cm}
\end{array}\] and position vector \[\begin{array}{*{20}{c}}
{\overrightarrow r }& = &{(\widehat i + 3\widehat j + 5\widehat k)}
\end{array}\]
Therefore, As per given the condition, we can write that
\[\begin{array}{*{20}{c}}
{ \Rightarrow \overrightarrow {r.} \overrightarrow p }& = &0
\end{array}\]
The \[\overrightarrow p \]and \[\overrightarrow r \]are perpendicular to each other. It means that the electric field will also be perpendicular to the position vector \[\overrightarrow r \].
\[\begin{array}{*{20}{c}}
{ \Rightarrow (\widehat i + 3\widehat j + 5\widehat k).( - \widehat i - 3\widehat j + 2\widehat k)}& = &0
\end{array}\]
Now, we know that the electric field is directly proportional to the electric dipole moment, but will be in the opposite direction. There will be a constant. Whose value will be greater than 0.
\[\begin{array}{*{20}{c}}
{ \Rightarrow \overrightarrow E }& = &{ - \lambda \overrightarrow p }
\end{array}\]
Here, a negative sign indicates that the electric field is in the opposite direction to the electric dipole moment. Therefore,
\[\begin{array}{*{20}{c}}
{ \Rightarrow \overrightarrow E }& = &{ - \lambda ( - \widehat i - 3\widehat j + 2\widehat k) \times {{10}^{ - 29}}}
\end{array}\]
\[\begin{array}{*{20}{c}}
{ \Rightarrow \overrightarrow E }& = &{\lambda (\widehat i + 3\widehat j - 2\widehat k) \times {{10}^{ - 29}}}
\end{array}\]
Therefore,\[\overrightarrow E \]will be parallel to the \[(\widehat i + 3\widehat j - 2\widehat k)\]
Now, the final answer is \[(\widehat i + 3\widehat j - 2\widehat k)\]. So, the correct option is C.
Note: In this question, the first point is to keep in mind that the \[\begin{array}{*{20}{c}}
\lambda & > &0
\end{array}\], Where, \[\lambda \]is constant which is the replacement of the proportionality sign.
Recently Updated Pages
How to find Oxidation Number - Important Concepts for JEE

How Electromagnetic Waves are Formed - Important Concepts for JEE

Electrical Resistance - Important Concepts and Tips for JEE

Average Atomic Mass - Important Concepts and Tips for JEE

Chemical Equation - Important Concepts and Tips for JEE

Concept of CP and CV of Gas - Important Concepts and Tips for JEE

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JEE Main Participating Colleges 2024 - A Complete List of Top Colleges

Degree of Dissociation and Its Formula With Solved Example for JEE

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Electric field due to uniformly charged sphere class 12 physics JEE_Main

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Ideal and Non-Ideal Solutions Raoult's Law - JEE
