
The electric field at a distance of $\dfrac{{3R}}{2}$ from the centre of a charged conducting spherical shell of radius $R$ is $E$. The electric field at a distance $\dfrac{R}{2}$ from the centre of the sphere is:
(A) Zero
(B) $E$
(C) $\dfrac{E}{2}$
(D) $\dfrac{E}{3}$
Answer
140.4k+ views
Hint: To solve this question, we need to use the property of the charge distribution within a hollow conductor. A spherical shell is basically a hollow sphere.
Complete step-by-step solution:
We know that a spherical shell is basically a sphere hollow from the inside. So we have been given a charged hollow sphere of radius $R$. Let the charge contained by the sphere be $Q$.
According to the question, the electric field at a distance of $\dfrac{{3R}}{2}$ from the centre of a charged conducting spherical shell is $E$.
The distance $d = \dfrac{{3R}}{2}$ can also be written as
$d = 1.5R$
So the given distance is greater than the radius of the spherical shell. We know that a charged spherical conductor behaves as a point charge concentrated at its centre, for all the distances greater than its radius. So the electric field can be given by
$E = \dfrac{Q}{{4\pi {\varepsilon _0}}}$
So the charge contained by the sphere can be given by
$Q = 4\pi {\varepsilon _0}E$
Therefore, the total charge contained by the sphere is equal to $4\pi {\varepsilon _0}E$.
Now we have to determine the electric field at a distance of $\dfrac{R}{2}$ from the centre of the spherical shell.
This distance can be given by
$d' = 0.5R$
So the given distance is less than the radius of the spherical shell. This means that the point situated at this distance is within the sphere.
Now, we know that when a hollow conductor is given a charge, then the charge gets distributed over the whole of its outer surface, to be at the maximum separation. So the whole charge of $4\pi {\varepsilon _0}E$ gets distributed over the outer surface of the spherical shell. This means that the charge within the given spherical shell will be equal to zero.
If we draw a Gaussian sphere concentric with the spherical shell, and pass through a point within the sphere, then the charge enclosed by this surface will be zero.
From the Gauss theorem we know that
$\oint {EdS} = \dfrac{q}{{{\varepsilon _0}}}$
Since $q = 0$ so we have
$\oint {EdS} = 0$
As the surface area of the sphere cannot be zero, so we have
$E = 0$
Therefore, the electric field at all points situated inside the spherical shell is equal to zero.
Thus, the electric field at a distance of $\dfrac{R}{2}$ from the centre of the spherical shell will be equal to zero.
Hence, the correct answer is option A.
Note: The information related to the electric field at the given distance, which is given in the question, is just extra information. We do not need this information for answering the given question.
Complete step-by-step solution:
We know that a spherical shell is basically a sphere hollow from the inside. So we have been given a charged hollow sphere of radius $R$. Let the charge contained by the sphere be $Q$.
According to the question, the electric field at a distance of $\dfrac{{3R}}{2}$ from the centre of a charged conducting spherical shell is $E$.
The distance $d = \dfrac{{3R}}{2}$ can also be written as
$d = 1.5R$
So the given distance is greater than the radius of the spherical shell. We know that a charged spherical conductor behaves as a point charge concentrated at its centre, for all the distances greater than its radius. So the electric field can be given by
$E = \dfrac{Q}{{4\pi {\varepsilon _0}}}$
So the charge contained by the sphere can be given by
$Q = 4\pi {\varepsilon _0}E$
Therefore, the total charge contained by the sphere is equal to $4\pi {\varepsilon _0}E$.
Now we have to determine the electric field at a distance of $\dfrac{R}{2}$ from the centre of the spherical shell.
This distance can be given by
$d' = 0.5R$
So the given distance is less than the radius of the spherical shell. This means that the point situated at this distance is within the sphere.
Now, we know that when a hollow conductor is given a charge, then the charge gets distributed over the whole of its outer surface, to be at the maximum separation. So the whole charge of $4\pi {\varepsilon _0}E$ gets distributed over the outer surface of the spherical shell. This means that the charge within the given spherical shell will be equal to zero.
If we draw a Gaussian sphere concentric with the spherical shell, and pass through a point within the sphere, then the charge enclosed by this surface will be zero.
From the Gauss theorem we know that
$\oint {EdS} = \dfrac{q}{{{\varepsilon _0}}}$
Since $q = 0$ so we have
$\oint {EdS} = 0$
As the surface area of the sphere cannot be zero, so we have
$E = 0$
Therefore, the electric field at all points situated inside the spherical shell is equal to zero.
Thus, the electric field at a distance of $\dfrac{R}{2}$ from the centre of the spherical shell will be equal to zero.
Hence, the correct answer is option A.
Note: The information related to the electric field at the given distance, which is given in the question, is just extra information. We do not need this information for answering the given question.
Recently Updated Pages
Young's Double Slit Experiment Step by Step Derivation

Difference Between Circuit Switching and Packet Switching

Difference Between Mass and Weight

JEE Main Participating Colleges 2024 - A Complete List of Top Colleges

JEE Main Maths Paper Pattern 2025 – Marking, Sections & Tips

Sign up for JEE Main 2025 Live Classes - Vedantu

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

A point charge + 20mu C is at a distance 6cm directly class 12 physics JEE_Main

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

Degree of Dissociation and Its Formula With Solved Example for JEE

Electric field due to uniformly charged sphere class 12 physics JEE_Main

Dual Nature of Radiation and Matter Class 12 Notes: CBSE Physics Chapter 11

Formula for number of images formed by two plane mirrors class 12 physics JEE_Main
