The electric field intensity at all points in space is given by $\vec E = \sqrt 3 \hat i - \hat j$ volts/ampere. A square frame LMNO of side 1 meter is shown in figure. The point N lies in the x-y plane. The initial angle between line ON and x-axis is $\theta = 60^\circ $. What is the magnitude of electric flux through the area enclosed in square frame LMNO?
A) 0 volt meter
B) 1 volt meter
C) 2 volt meter
D) 4 volt meter
Answer
Verified
119.7k+ views
Hint: The magnitude of the electric flux through the square frame is the dot product of the electric field intensity with the area of the frame.
Complete step by step solution:
The electric field intensity is given to us. The electric field intensity does not vary with position or time, thus it is a constant vector. The area of the square frame is 1 ${m^2}$. But the frame is at an angle of 60 degrees with the x-axis. So the area vector, denoted by $\vec S$, becomes,
$\vec S = 1\sin \left( {60^\circ } \right)\hat i + 1\cos \left( {60^\circ } \right)\left( { - \hat j} \right) = \dfrac{{\sqrt 3 }}{2}\hat i - \dfrac{1}{2}\hat j$
Now, we can find out the electric flux passing through the area enclosed by the square frame by taking the dot product of electric field intensity and area vector. On taking dot product, we obtain,
$\phi = \vec E \cdot \vec S$ …equation (1)
We now substitute the values of the vectors of area and electric field intensity in equation (1). We get,
$\phi = \left( {\sqrt 3 \hat i - \hat j} \right) \cdot \left( {\dfrac{{\sqrt 3 }}{2}\hat i - \dfrac{1}{2}\hat j} \right) = \dfrac{3}{2} + \dfrac{1}{2} = 2$ volt meter
Hence, the electric flux passing through the square frame is 2 volt meter.
Therefore, the correct answer of the question is option (C).
Note: The above question can also be solved by finding out the magnitude of the electric field intensity vector and area vector and then finding out the angle between these vectors to find out the electric flux passing through the square frame. But, doing that is more prone to errors because it will be relatively more calculation intensive.
Complete step by step solution:
The electric field intensity is given to us. The electric field intensity does not vary with position or time, thus it is a constant vector. The area of the square frame is 1 ${m^2}$. But the frame is at an angle of 60 degrees with the x-axis. So the area vector, denoted by $\vec S$, becomes,
$\vec S = 1\sin \left( {60^\circ } \right)\hat i + 1\cos \left( {60^\circ } \right)\left( { - \hat j} \right) = \dfrac{{\sqrt 3 }}{2}\hat i - \dfrac{1}{2}\hat j$
Now, we can find out the electric flux passing through the area enclosed by the square frame by taking the dot product of electric field intensity and area vector. On taking dot product, we obtain,
$\phi = \vec E \cdot \vec S$ …equation (1)
We now substitute the values of the vectors of area and electric field intensity in equation (1). We get,
$\phi = \left( {\sqrt 3 \hat i - \hat j} \right) \cdot \left( {\dfrac{{\sqrt 3 }}{2}\hat i - \dfrac{1}{2}\hat j} \right) = \dfrac{3}{2} + \dfrac{1}{2} = 2$ volt meter
Hence, the electric flux passing through the square frame is 2 volt meter.
Therefore, the correct answer of the question is option (C).
Note: The above question can also be solved by finding out the magnitude of the electric field intensity vector and area vector and then finding out the angle between these vectors to find out the electric flux passing through the square frame. But, doing that is more prone to errors because it will be relatively more calculation intensive.
Recently Updated Pages
Young's Double Slit Experiment Step by Step Derivation
Difference Between Circuit Switching and Packet Switching
Difference Between Mass and Weight
JEE Main Participating Colleges 2024 - A Complete List of Top Colleges
JEE Main Maths Paper Pattern 2025 – Marking, Sections & Tips
Sign up for JEE Main 2025 Live Classes - Vedantu
Trending doubts
JEE Main 2025: Application Form (Out), Exam Dates (Released), Eligibility & More
JEE Main Login 2045: Step-by-Step Instructions and Details
JEE Main Chemistry Question Paper with Answer Keys and Solutions
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking
Learn About Angle Of Deviation In Prism: JEE Main Physics 2025
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs
Dual Nature of Radiation and Matter Class 12 Notes CBSE Physics Chapter 11 (Free PDF Download)
Electric field due to uniformly charged sphere class 12 physics JEE_Main
Charging and Discharging of Capacitor
JEE Main Chemistry Exam Pattern 2025
Degree of Dissociation and Its Formula With Solved Example for JEE