
The emissivity of tungsten is approximately 0.35 A tungsten sphere 1 cm in radius is suspended within a large evacuated enclosure whose walls are at 300 K. What power input is required to maintain the sphere at a temperature of 3000 K? ( \[\sigma = 5.67 \times 10 - 8\] inSI unit)
A) 1020 W
B) 2020 W
C) 3020 W
D) 4020 W
Answer
232.8k+ views
Hint: Amount of heat radiated by tungsten will be equal to the amount of energy supplied. According to Stephan’s law the heat loss is given by, \[e\sigma A({T^2} - {T_0}^2)\] . Substitute the values of initial and final temperature, area, emissivity and the constant. Simplify to find the value power required.
Complete step-by-step solution
Energy is never produced or destroyed in this universe; there is always a transfer of energy from one form to another. Energy loss can be in the form of heat. In our case also, the amount of heat to be supplied per unit time to maintain the temperature of the sphere is the heat lost per unit time by that sphere.
Using Stephan’s law,
\[
Heat\,lost\,of\,radiation = e\sigma A({T^2} - {T_0}^2) \\
T = 3000k \\
{T_0} = 300k \\
A = 4\pi {r^2} = 4\pi \times {0.01^2} \\
Substituting, \\
P = 0.35 \times 5.67 \times {10^{ - 8}} \times 4\pi {(0.01)^2}[{3000^2} - {300^2}] \\
P = 2019.8W \\
\]
Therefore, the correct answer is option B.
Note: This equation is in terms of power or heat transferred per unit time. If you want to calculate the heat transferred in say 1 minute, then multiply the power value with 60s.According to Stephan's law the radiant energy emitted by a perfectly black body per unit area per second is directly proportional to the fourth power of its absolute temperature.
$E \propto {T^4} \Rightarrow E = \sigma {T^4}$
Complete step-by-step solution
Energy is never produced or destroyed in this universe; there is always a transfer of energy from one form to another. Energy loss can be in the form of heat. In our case also, the amount of heat to be supplied per unit time to maintain the temperature of the sphere is the heat lost per unit time by that sphere.
Using Stephan’s law,
\[
Heat\,lost\,of\,radiation = e\sigma A({T^2} - {T_0}^2) \\
T = 3000k \\
{T_0} = 300k \\
A = 4\pi {r^2} = 4\pi \times {0.01^2} \\
Substituting, \\
P = 0.35 \times 5.67 \times {10^{ - 8}} \times 4\pi {(0.01)^2}[{3000^2} - {300^2}] \\
P = 2019.8W \\
\]
Therefore, the correct answer is option B.
Note: This equation is in terms of power or heat transferred per unit time. If you want to calculate the heat transferred in say 1 minute, then multiply the power value with 60s.According to Stephan's law the radiant energy emitted by a perfectly black body per unit area per second is directly proportional to the fourth power of its absolute temperature.
$E \propto {T^4} \Rightarrow E = \sigma {T^4}$
Recently Updated Pages
States of Matter Chapter For JEE Main Chemistry

JEE Main Participating Colleges 2026 - A Complete List of Top Colleges

Circuit Switching vs Packet Switching: Key Differences Explained

Mass vs Weight: Key Differences Explained for Students

[Awaiting the three content sources: Ask AI Response, Competitor 1 Content, and Competitor 2 Content. Please provide those to continue with the analysis and optimization.]

Sign up for JEE Main 2026 Live Classes - Vedantu

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Laws of Motion Class 11 Physics Chapter 4 CBSE Notes - 2025-26

Waves Class 11 Physics Chapter 14 CBSE Notes - 2025-26

Mechanical Properties of Fluids Class 11 Physics Chapter 9 CBSE Notes - 2025-26

Thermodynamics Class 11 Physics Chapter 11 CBSE Notes - 2025-26

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

