
The equivalent inductance of two inductors is 2.4 mH when connected in parallel and 10 mH when connected in series. The difference between two inductance is $($neglecting mutual induction between coils$)$.
(A) 3mH
(B) 2mH
(C) 4mH
(D) 16mH
Answer
223.2k+ views
Hint: When inductor connected in series combination then equivalent inductance will be given as
${L_{eq}} = {L_1} + {L_2} + {L_3} + ....$
When inductors are connected in parallel combination then equivalent inductance will be given as
$\dfrac{1}{{{L_{eq}}}} = \dfrac{1}{{{L_1}}} + \dfrac{1}{{{L_2}}} + \dfrac{1}{{{L_3}}} + .....$
Step by step answer: Given that 2 inductors ${L_1}$ and ${L_2}(Let)$ are connected in parallel then their equivalent inductance is 2.4 mH.
i.e., $\dfrac{1}{{{L_{eq}}}} = \dfrac{1}{{{L_1}}} + \dfrac{1}{{{L_2}}}$
So, \[\dfrac{1}{{{L_1}}} + \dfrac{1}{{{L_2}}} = \dfrac{1}{{2.4}}\]
$\dfrac{{{L_2} + {L_1}}}{{{L_1}{L_2}}} = \dfrac{{10}}{{24}}$
${L_1}{L_2} = \dfrac{{24}}{{10}}({L_1} + {L_2})$ …..(1)
When ${L_1}$ and ${L_2}$ are connected in series then their equivalent inductance is 10 mH.
i.e., ${L_{eq}} = {L_1} + {L_2}$
$10 = {L_1} + {L_2}$ …..(2)
From equation 1 & 2 we get
${L_1}{L_2} = \dfrac{{24}}{{10}} \times 10$
${L_1}{L_2} = 24$
So, ${L_1} = \dfrac{{24}}{{{L_2}}}$ …..(3)
On putting the value of ${L_1}$ in equation 2
$\dfrac{{24}}{{{L_2}}} + {L_2} = 10$
$\dfrac{{24 + L_2^2}}{{{L_2}}} = 10$
$24 + L_2^2 = 10{L_2}$
$L_2^2 - 10{L_2} + 24 = 0$
$L_2^2 - 6{L_2} - 4{L_2} + 24 = 0$
${L_2}({L_2} - 6) - 4({L_2} - 6) = 0$
$({L_2} - 6)({L_2} - 4) = 0$
${L_2} = 4,6$ ….(4)
Now put the value of ${L_2}$ in equation 3
We will get ${L_1}$.
Here we have 2 values of ${L_2}$. So, put one by one each value and will get ${L_1}$.
When ${L_2} = 4mH$
Then from equation 3
${L_1} = \dfrac{{24}}{4}$
${L_1} = 6mH$ …..(6)
When ${L_2} = 6mH$
Then from equation 3
${L_1} = \dfrac{{24}}{6}$
${L_1} = \dfrac{{24}}{6}$
${L_1} = 4mH$ …..(6)
So, we will get 2 combinations of ${L_1}$ & ${L_2}$ which are
If ${L_1} = 4mH$ If ${L_1} = 6mH$
Then ${L_2} = 6mH$ then ${L_2} = 4mH$
Now, we have to calculate the difference between ${L_1}$ and ${L_2}$. Which is
${L_1} - {L_2} = 6 - 4 = 2mH$
So, from both combinations of ${L_1}$ and ${L_2}$ we will get a difference between them of 2 mH.
Hence, option B is the correct answer. 2mH
Note: In many problems of inductors, they can ask for current and voltage.
In series combination, the value of current in each inductor is the same. But voltage is different.
In parallel combination, the potential difference i.e., voltage across each inductor is same but current is different.
${L_{eq}} = {L_1} + {L_2} + {L_3} + ....$
When inductors are connected in parallel combination then equivalent inductance will be given as
$\dfrac{1}{{{L_{eq}}}} = \dfrac{1}{{{L_1}}} + \dfrac{1}{{{L_2}}} + \dfrac{1}{{{L_3}}} + .....$
Step by step answer: Given that 2 inductors ${L_1}$ and ${L_2}(Let)$ are connected in parallel then their equivalent inductance is 2.4 mH.
i.e., $\dfrac{1}{{{L_{eq}}}} = \dfrac{1}{{{L_1}}} + \dfrac{1}{{{L_2}}}$
So, \[\dfrac{1}{{{L_1}}} + \dfrac{1}{{{L_2}}} = \dfrac{1}{{2.4}}\]
$\dfrac{{{L_2} + {L_1}}}{{{L_1}{L_2}}} = \dfrac{{10}}{{24}}$
${L_1}{L_2} = \dfrac{{24}}{{10}}({L_1} + {L_2})$ …..(1)
When ${L_1}$ and ${L_2}$ are connected in series then their equivalent inductance is 10 mH.
i.e., ${L_{eq}} = {L_1} + {L_2}$
$10 = {L_1} + {L_2}$ …..(2)
From equation 1 & 2 we get
${L_1}{L_2} = \dfrac{{24}}{{10}} \times 10$
${L_1}{L_2} = 24$
So, ${L_1} = \dfrac{{24}}{{{L_2}}}$ …..(3)
On putting the value of ${L_1}$ in equation 2
$\dfrac{{24}}{{{L_2}}} + {L_2} = 10$
$\dfrac{{24 + L_2^2}}{{{L_2}}} = 10$
$24 + L_2^2 = 10{L_2}$
$L_2^2 - 10{L_2} + 24 = 0$
$L_2^2 - 6{L_2} - 4{L_2} + 24 = 0$
${L_2}({L_2} - 6) - 4({L_2} - 6) = 0$
$({L_2} - 6)({L_2} - 4) = 0$
${L_2} = 4,6$ ….(4)
Now put the value of ${L_2}$ in equation 3
We will get ${L_1}$.
Here we have 2 values of ${L_2}$. So, put one by one each value and will get ${L_1}$.
When ${L_2} = 4mH$
Then from equation 3
${L_1} = \dfrac{{24}}{4}$
${L_1} = 6mH$ …..(6)
When ${L_2} = 6mH$
Then from equation 3
${L_1} = \dfrac{{24}}{6}$
${L_1} = \dfrac{{24}}{6}$
${L_1} = 4mH$ …..(6)
So, we will get 2 combinations of ${L_1}$ & ${L_2}$ which are
If ${L_1} = 4mH$ If ${L_1} = 6mH$
Then ${L_2} = 6mH$ then ${L_2} = 4mH$
Now, we have to calculate the difference between ${L_1}$ and ${L_2}$. Which is
${L_1} - {L_2} = 6 - 4 = 2mH$
So, from both combinations of ${L_1}$ and ${L_2}$ we will get a difference between them of 2 mH.
Hence, option B is the correct answer. 2mH
Note: In many problems of inductors, they can ask for current and voltage.
In series combination, the value of current in each inductor is the same. But voltage is different.
In parallel combination, the potential difference i.e., voltage across each inductor is same but current is different.
Recently Updated Pages
JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

JEE Energetics Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2026: City Intimation Slip Expected Soon, Application Form Closed, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

How to Convert a Galvanometer into an Ammeter or Voltmeter

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Hybridisation in Chemistry – Concept, Types & Applications

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Dual Nature of Radiation and Matter Class 12 Physics Chapter 11 CBSE Notes - 2025-26

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

Understanding Atomic Structure for Beginners

Half Life of Zero Order Reaction for JEE

