Answer
Verified
110.7k+ views
Hint: When inductor connected in series combination then equivalent inductance will be given as
${L_{eq}} = {L_1} + {L_2} + {L_3} + ....$
When inductors are connected in parallel combination then equivalent inductance will be given as
$\dfrac{1}{{{L_{eq}}}} = \dfrac{1}{{{L_1}}} + \dfrac{1}{{{L_2}}} + \dfrac{1}{{{L_3}}} + .....$
Step by step answer: Given that 2 inductors ${L_1}$ and ${L_2}(Let)$ are connected in parallel then their equivalent inductance is 2.4 mH.
i.e., $\dfrac{1}{{{L_{eq}}}} = \dfrac{1}{{{L_1}}} + \dfrac{1}{{{L_2}}}$
So, \[\dfrac{1}{{{L_1}}} + \dfrac{1}{{{L_2}}} = \dfrac{1}{{2.4}}\]
$\dfrac{{{L_2} + {L_1}}}{{{L_1}{L_2}}} = \dfrac{{10}}{{24}}$
${L_1}{L_2} = \dfrac{{24}}{{10}}({L_1} + {L_2})$ …..(1)
When ${L_1}$ and ${L_2}$ are connected in series then their equivalent inductance is 10 mH.
i.e., ${L_{eq}} = {L_1} + {L_2}$
$10 = {L_1} + {L_2}$ …..(2)
From equation 1 & 2 we get
${L_1}{L_2} = \dfrac{{24}}{{10}} \times 10$
${L_1}{L_2} = 24$
So, ${L_1} = \dfrac{{24}}{{{L_2}}}$ …..(3)
On putting the value of ${L_1}$ in equation 2
$\dfrac{{24}}{{{L_2}}} + {L_2} = 10$
$\dfrac{{24 + L_2^2}}{{{L_2}}} = 10$
$24 + L_2^2 = 10{L_2}$
$L_2^2 - 10{L_2} + 24 = 0$
$L_2^2 - 6{L_2} - 4{L_2} + 24 = 0$
${L_2}({L_2} - 6) - 4({L_2} - 6) = 0$
$({L_2} - 6)({L_2} - 4) = 0$
${L_2} = 4,6$ ….(4)
Now put the value of ${L_2}$ in equation 3
We will get ${L_1}$.
Here we have 2 values of ${L_2}$. So, put one by one each value and will get ${L_1}$.
When ${L_2} = 4mH$
Then from equation 3
${L_1} = \dfrac{{24}}{4}$
${L_1} = 6mH$ …..(6)
When ${L_2} = 6mH$
Then from equation 3
${L_1} = \dfrac{{24}}{6}$
${L_1} = \dfrac{{24}}{6}$
${L_1} = 4mH$ …..(6)
So, we will get 2 combinations of ${L_1}$ & ${L_2}$ which are
If ${L_1} = 4mH$ If ${L_1} = 6mH$
Then ${L_2} = 6mH$ then ${L_2} = 4mH$
Now, we have to calculate the difference between ${L_1}$ and ${L_2}$. Which is
${L_1} - {L_2} = 6 - 4 = 2mH$
So, from both combinations of ${L_1}$ and ${L_2}$ we will get a difference between them of 2 mH.
Hence, option B is the correct answer. 2mH
Note: In many problems of inductors, they can ask for current and voltage.
In series combination, the value of current in each inductor is the same. But voltage is different.
In parallel combination, the potential difference i.e., voltage across each inductor is same but current is different.
${L_{eq}} = {L_1} + {L_2} + {L_3} + ....$
When inductors are connected in parallel combination then equivalent inductance will be given as
$\dfrac{1}{{{L_{eq}}}} = \dfrac{1}{{{L_1}}} + \dfrac{1}{{{L_2}}} + \dfrac{1}{{{L_3}}} + .....$
Step by step answer: Given that 2 inductors ${L_1}$ and ${L_2}(Let)$ are connected in parallel then their equivalent inductance is 2.4 mH.
i.e., $\dfrac{1}{{{L_{eq}}}} = \dfrac{1}{{{L_1}}} + \dfrac{1}{{{L_2}}}$
So, \[\dfrac{1}{{{L_1}}} + \dfrac{1}{{{L_2}}} = \dfrac{1}{{2.4}}\]
$\dfrac{{{L_2} + {L_1}}}{{{L_1}{L_2}}} = \dfrac{{10}}{{24}}$
${L_1}{L_2} = \dfrac{{24}}{{10}}({L_1} + {L_2})$ …..(1)
When ${L_1}$ and ${L_2}$ are connected in series then their equivalent inductance is 10 mH.
i.e., ${L_{eq}} = {L_1} + {L_2}$
$10 = {L_1} + {L_2}$ …..(2)
From equation 1 & 2 we get
${L_1}{L_2} = \dfrac{{24}}{{10}} \times 10$
${L_1}{L_2} = 24$
So, ${L_1} = \dfrac{{24}}{{{L_2}}}$ …..(3)
On putting the value of ${L_1}$ in equation 2
$\dfrac{{24}}{{{L_2}}} + {L_2} = 10$
$\dfrac{{24 + L_2^2}}{{{L_2}}} = 10$
$24 + L_2^2 = 10{L_2}$
$L_2^2 - 10{L_2} + 24 = 0$
$L_2^2 - 6{L_2} - 4{L_2} + 24 = 0$
${L_2}({L_2} - 6) - 4({L_2} - 6) = 0$
$({L_2} - 6)({L_2} - 4) = 0$
${L_2} = 4,6$ ….(4)
Now put the value of ${L_2}$ in equation 3
We will get ${L_1}$.
Here we have 2 values of ${L_2}$. So, put one by one each value and will get ${L_1}$.
When ${L_2} = 4mH$
Then from equation 3
${L_1} = \dfrac{{24}}{4}$
${L_1} = 6mH$ …..(6)
When ${L_2} = 6mH$
Then from equation 3
${L_1} = \dfrac{{24}}{6}$
${L_1} = \dfrac{{24}}{6}$
${L_1} = 4mH$ …..(6)
So, we will get 2 combinations of ${L_1}$ & ${L_2}$ which are
If ${L_1} = 4mH$ If ${L_1} = 6mH$
Then ${L_2} = 6mH$ then ${L_2} = 4mH$
Now, we have to calculate the difference between ${L_1}$ and ${L_2}$. Which is
${L_1} - {L_2} = 6 - 4 = 2mH$
So, from both combinations of ${L_1}$ and ${L_2}$ we will get a difference between them of 2 mH.
Hence, option B is the correct answer. 2mH
Note: In many problems of inductors, they can ask for current and voltage.
In series combination, the value of current in each inductor is the same. But voltage is different.
In parallel combination, the potential difference i.e., voltage across each inductor is same but current is different.
Recently Updated Pages
Write an article on the need and importance of sports class 10 english JEE_Main
Write a composition in approximately 450 500 words class 10 english JEE_Main
Arrange the sentences P Q R between S1 and S5 such class 10 english JEE_Main
If x2 hx 21 0x2 3hx + 35 0h 0 has a common root then class 10 maths JEE_Main
The radius of a sector is 12 cm and the angle is 120circ class 10 maths JEE_Main
For what value of x function fleft x right x4 4x3 + class 10 maths JEE_Main
Other Pages
Electric field due to uniformly charged sphere class 12 physics JEE_Main
If a wire of resistance R is stretched to double of class 12 physics JEE_Main
In Searles apparatus when the experimental wire is class 11 physics JEE_Main
The energy stored is a condenser is in the form of class 12 physics JEE_Main
Excluding stoppages the speed of a bus is 54 kmph and class 11 maths JEE_Main