Answer
Verified
114.9k+ views
Hint A concave mirror is a spherical mirror whose reflecting surface is its bent surface. There is a relation between the focal length of a mirror $f$, distance of an object $u$ and distance of the image formed $v$, known as Mirror formula and given by $\dfrac{1}{f} = \dfrac{1}{v} + \dfrac{1}{u}$ .
Linear magnification of a mirror is the ratio of height of the image formed by the mirror to the height of the object and which is given by $m = \dfrac{{ - v}}{u}$ where $v$ is the distance of the image and $u$ is the distance of the object. If an object is magnified by two times and is inverted then its linear magnification $m = - 2$ .
Complete step by step answer
Let us first know about a concave mirror.
A concave mirror is a spherical mirror whose reflecting surface is its bent surface.
As given in the question that the focal length of a concave mirror, $f = 50{\text{ cm}}$ .
We are asked to find the distance of the object $u$ such that the image formed is two times magnified, real and inverted.
If an object is magnified by two times and is inverted then its linear magnification $m = - 2$ .
Let us discuss the linear magnification of a mirror.
Linear magnification of a mirror is the ratio of height of the image formed by the mirror to the height of the object and which is given by $m = \dfrac{{ - v}}{u}$ where $v$ is the distance of the image and $u$ is the distance of the object.
So, according to the question,
$\dfrac{{ - v}}{u} = - 2$ which simplifies to $v = 2u$
As we know that there is a relation between the focal length of a mirror $f$, distance of an object $u$ and distance of the image formed $v$, known as Mirror formula and given by $\dfrac{1}{f} = \dfrac{1}{v} + \dfrac{1}{u}$ .
So, substituting the values in the mirror formula we have
$\dfrac{1}{{50}} = \dfrac{1}{{2u}} + \dfrac{1}{u} = \dfrac{3}{{2u}}$
On simplifying we have
$u = 75cm$
Therefore, the object is to be placed at distance $75{\text{ cm}}$ from the mirror so that its image is two times magnified, real and inverted.
Hence, option A is correct
Note Here, we take negative sign for the magnification because the image formed is inverted i.e. below the central axis of the mirror.
Distances of any point are measured along the central axis by convention, as the direction towards the object in mirror is taken as positive and away from the object is taken as negative. Hence the radius of curvature and the focal length are negative for convex mirrors and positive for concave mirrors.
Linear magnification of a mirror is the ratio of height of the image formed by the mirror to the height of the object and which is given by $m = \dfrac{{ - v}}{u}$ where $v$ is the distance of the image and $u$ is the distance of the object. If an object is magnified by two times and is inverted then its linear magnification $m = - 2$ .
Complete step by step answer
Let us first know about a concave mirror.
A concave mirror is a spherical mirror whose reflecting surface is its bent surface.
As given in the question that the focal length of a concave mirror, $f = 50{\text{ cm}}$ .
We are asked to find the distance of the object $u$ such that the image formed is two times magnified, real and inverted.
If an object is magnified by two times and is inverted then its linear magnification $m = - 2$ .
Let us discuss the linear magnification of a mirror.
Linear magnification of a mirror is the ratio of height of the image formed by the mirror to the height of the object and which is given by $m = \dfrac{{ - v}}{u}$ where $v$ is the distance of the image and $u$ is the distance of the object.
So, according to the question,
$\dfrac{{ - v}}{u} = - 2$ which simplifies to $v = 2u$
As we know that there is a relation between the focal length of a mirror $f$, distance of an object $u$ and distance of the image formed $v$, known as Mirror formula and given by $\dfrac{1}{f} = \dfrac{1}{v} + \dfrac{1}{u}$ .
So, substituting the values in the mirror formula we have
$\dfrac{1}{{50}} = \dfrac{1}{{2u}} + \dfrac{1}{u} = \dfrac{3}{{2u}}$
On simplifying we have
$u = 75cm$
Therefore, the object is to be placed at distance $75{\text{ cm}}$ from the mirror so that its image is two times magnified, real and inverted.
Hence, option A is correct
Note Here, we take negative sign for the magnification because the image formed is inverted i.e. below the central axis of the mirror.
Distances of any point are measured along the central axis by convention, as the direction towards the object in mirror is taken as positive and away from the object is taken as negative. Hence the radius of curvature and the focal length are negative for convex mirrors and positive for concave mirrors.
Recently Updated Pages
JEE Main 2021 July 25 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key
JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 20 Shift 2 Question Paper with Answer Key
Hybridization of Atomic Orbitals Important Concepts and Tips for JEE
Atomic Structure: Complete Explanation for JEE Main 2025
Trending doubts
JEE Main 2025: Application Form (Out), Exam Dates (Released), Eligibility & More
Learn About Angle Of Deviation In Prism: JEE Main Physics 2025
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
JEE Main Login 2045: Step-by-Step Instructions and Details
Degree of Dissociation and Its Formula With Solved Example for JEE
JEE Main 2025: Derivation of Equation of Trajectory in Physics
Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs
Dual Nature of Radiation and Matter Class 12 Notes CBSE Physics Chapter 11 (Free PDF Download)
Diffraction of Light - Young’s Single Slit Experiment
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking
Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation
Electric field due to uniformly charged sphere class 12 physics JEE_Main