
The force between two current-carrying parallel wires has been used to define
A) Ampere
B) Coulomb
C) Volt
D) Watt
Answer
140.4k+ views
Hint: The force per unit length between two current-carrying wires depends on the product of the current flowing in the individual wires and inversely proportional to the distance between them. Ampere is the unit of current.
Formula used: In this solution, we will use the following formula:
Force per length between two current-carrying wires: $\dfrac{F}{l} = \dfrac{{2{\mu _0}{I_1}{I_2}}}{r}$ where ${I_1}\,{\text{and}}\,{I_2}$ are the current in the two wires, $r$ is the distance between them.
Complete step by step answer:
We know that the force per length between two current-carrying wires is given by:
$\dfrac{F}{l} = \dfrac{{2{\mu _0}{I_1}{I_2}}}{r}$
In this equation, for two given wires, we can calculate the force that acts between them and we can also measure the distance between the two wires experimentally. Then we can say that 1 Newton of force acts per unit length for two current-carrying wires that carry a current of 1 Ampere and are placed 1 metre apart.
Hence the force between two current-carrying parallel wires is used to define the units of Ampere.
So, option (A) is the correct choice.
Note: The force between two current-carrying wires depends on the direction of the currents in the two wires. If the currents flow in opposite directions, the force is attractive and if the current is in the same direction, the force is repulsive. One ampere of current corresponds to the value carried by two wires which when placed one metre apart will experience a force of 1 Newton between each other.
Formula used: In this solution, we will use the following formula:
Force per length between two current-carrying wires: $\dfrac{F}{l} = \dfrac{{2{\mu _0}{I_1}{I_2}}}{r}$ where ${I_1}\,{\text{and}}\,{I_2}$ are the current in the two wires, $r$ is the distance between them.
Complete step by step answer:
We know that the force per length between two current-carrying wires is given by:
$\dfrac{F}{l} = \dfrac{{2{\mu _0}{I_1}{I_2}}}{r}$
In this equation, for two given wires, we can calculate the force that acts between them and we can also measure the distance between the two wires experimentally. Then we can say that 1 Newton of force acts per unit length for two current-carrying wires that carry a current of 1 Ampere and are placed 1 metre apart.
Hence the force between two current-carrying parallel wires is used to define the units of Ampere.
So, option (A) is the correct choice.
Note: The force between two current-carrying wires depends on the direction of the currents in the two wires. If the currents flow in opposite directions, the force is attractive and if the current is in the same direction, the force is repulsive. One ampere of current corresponds to the value carried by two wires which when placed one metre apart will experience a force of 1 Newton between each other.
Recently Updated Pages
Young's Double Slit Experiment Step by Step Derivation

Difference Between Circuit Switching and Packet Switching

Difference Between Mass and Weight

JEE Main Participating Colleges 2024 - A Complete List of Top Colleges

JEE Main Maths Paper Pattern 2025 – Marking, Sections & Tips

Sign up for JEE Main 2025 Live Classes - Vedantu

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

A point charge + 20mu C is at a distance 6cm directly class 12 physics JEE_Main

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

Degree of Dissociation and Its Formula With Solved Example for JEE

Electric field due to uniformly charged sphere class 12 physics JEE_Main

Dual Nature of Radiation and Matter Class 12 Notes: CBSE Physics Chapter 11

Formula for number of images formed by two plane mirrors class 12 physics JEE_Main
