Answer
Verified
114.9k+ views
Hint:The elastic potential energy of the spring is proportional to the square of the change in length of the spring and the spring force is linear proportional to the change in the length. As the spring forces are different, so to have same elastic potential energy, the change in lengths of springs will be different.
Formula used:
\[U = \dfrac{1}{2}k{x^2}\]
Where U is the elastic potential energy in the spring of spring constant K and x is the change in length.
\[F = kx\]
Where F is the magnitude of the spring force of spring constant K when change in length is x.
Complete step by step solution:
Let the changes in length of the springs are \[{x_1}\]and \[{x_2}\]. Then the elastic energy in first spring is,
\[{U_1} = \dfrac{1}{2}{K_1}x_1^2\]
The elastic energy in the second spring is,
\[{U_2} = \dfrac{1}{2}{K_2}x_2^2\]
It is given that the elastic energy stored in both the springs are equal.
\[{U_1} = {U_2}\]
\[\dfrac{1}{2}{K_1}x_1^2 = \dfrac{1}{2}{K_2}x_2^2\]
\[\dfrac{{{x_1}}}{{{x_2}}} = \sqrt {\dfrac{{{K_2}}}{{{K_1}}}} \]
The spring forces in the springs are given as \[{F_1}\]and \[{F_2}\]
Using force formula, the forces in the springs are,
\[{F_1} = {K_1}{x_1}\]for the first spring,
\[{F_2} = {K_2}{x_2}\]for the second spring.
On dividing the expression for the forces, we get
\[\dfrac{{{F_1}}}{{{F_2}}} = \dfrac{{{K_1}{x_1}}}{{{K_2}{x_2}}}\]
\[\dfrac{{{F_1}}}{{{F_2}}} = \dfrac{{{K_1}}}{{{K_2}}} \times \left( {\sqrt {\dfrac{{{K_2}}}{{{K_1}}}} } \right)\]
\[\dfrac{{{F_1}}}{{{F_2}}} = \sqrt {\dfrac{{{K_1}}}{{{K_2}}}} \]
So, the spring force ratio is \[{F_1}:{F_2} = \sqrt {{K_1}} :\sqrt {{K_2}} \]
Therefore, the correct option is (C).
Note:The work done by the stretching force is stored as the elastic potential energy of the spring. For the same amount of applied force, the change in length of the springs will be inversely proportional to the spring constant.
Formula used:
\[U = \dfrac{1}{2}k{x^2}\]
Where U is the elastic potential energy in the spring of spring constant K and x is the change in length.
\[F = kx\]
Where F is the magnitude of the spring force of spring constant K when change in length is x.
Complete step by step solution:
Let the changes in length of the springs are \[{x_1}\]and \[{x_2}\]. Then the elastic energy in first spring is,
\[{U_1} = \dfrac{1}{2}{K_1}x_1^2\]
The elastic energy in the second spring is,
\[{U_2} = \dfrac{1}{2}{K_2}x_2^2\]
It is given that the elastic energy stored in both the springs are equal.
\[{U_1} = {U_2}\]
\[\dfrac{1}{2}{K_1}x_1^2 = \dfrac{1}{2}{K_2}x_2^2\]
\[\dfrac{{{x_1}}}{{{x_2}}} = \sqrt {\dfrac{{{K_2}}}{{{K_1}}}} \]
The spring forces in the springs are given as \[{F_1}\]and \[{F_2}\]
Using force formula, the forces in the springs are,
\[{F_1} = {K_1}{x_1}\]for the first spring,
\[{F_2} = {K_2}{x_2}\]for the second spring.
On dividing the expression for the forces, we get
\[\dfrac{{{F_1}}}{{{F_2}}} = \dfrac{{{K_1}{x_1}}}{{{K_2}{x_2}}}\]
\[\dfrac{{{F_1}}}{{{F_2}}} = \dfrac{{{K_1}}}{{{K_2}}} \times \left( {\sqrt {\dfrac{{{K_2}}}{{{K_1}}}} } \right)\]
\[\dfrac{{{F_1}}}{{{F_2}}} = \sqrt {\dfrac{{{K_1}}}{{{K_2}}}} \]
So, the spring force ratio is \[{F_1}:{F_2} = \sqrt {{K_1}} :\sqrt {{K_2}} \]
Therefore, the correct option is (C).
Note:The work done by the stretching force is stored as the elastic potential energy of the spring. For the same amount of applied force, the change in length of the springs will be inversely proportional to the spring constant.
Recently Updated Pages
JEE Main 2021 July 25 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key
JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 20 Shift 2 Question Paper with Answer Key
Hybridization of Atomic Orbitals Important Concepts and Tips for JEE
Atomic Structure: Complete Explanation for JEE Main 2025
Trending doubts
JEE Main 2025: Application Form (Out), Exam Dates (Released), Eligibility & More
Class 11 JEE Main Physics Mock Test 2025
Learn About Angle Of Deviation In Prism: JEE Main Physics 2025
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
JEE Main Login 2045: Step-by-Step Instructions and Details
Degree of Dissociation and Its Formula With Solved Example for JEE
Other Pages
NCERT Solutions for Class 11 Physics Chapter 7 Gravitation
NCERT Solutions for Class 11 Physics Chapter 9 Mechanical Properties of Fluids
Units and Measurements Class 11 Notes - CBSE Physics Chapter 1
NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements
NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs