
The frequency \[(f)\] of a string depends upon the tension \[F\] (dimensions of force), the length \[l\] of the string and the mass per unit length \[\mu \] of the string. Derive the formula for frequency.
Answer
133.8k+ views
Hint: Assume a proportional relation of \[f\] with \[F\], \[l\] and \[\mu \]. Then use the dimensional analysis to derive the formula.
Complete step-by-step solution
Let the frequency \[f\] be proportional to the tension \[F\] raised to the power \[x\], length \[l\] raised to the power \[y\] and mass per unit length \[\mu \] raised to the power \[z\], i.e.
\[f \propto {F^x}{l^y}{\mu ^z}\]
Removing the proportionality sign with the constant \[c\], we get
\[f = c({F^x}{l^y}{\mu ^z})\] …...(1)
For the above equation to be correct, the dimensions of the quantity in the LHS should be equal to the dimensions of the quantities in the RHS.
Replacing the quantities of the above equation with their dimensions, we get
\[\left[ f \right] = \left[ {{M^0}{L^0}{T^{ - 1}}} \right]\], \[\left[ F \right] = \left[ {{M^1}{L^1}{T^{ - 2}}} \right]\], \[\left[ l \right] = \left[ {{M^0}{L^1}{T^0}} \right]\]and \[\left[ \mu \right] = \left[ {{M^1}{L^{ - 1}}{T^0}} \right]\]
\[\because c\] is a constant, so it has no dimensions.
Substituting these in (1) we get
\[\left[ {{M^0}{L^0}{T^{ - 1}}} \right] = {\left[ {{M^1}{L^1}{T^{ - 2}}} \right]^x}{\left[ {{M^0}{L^1}{T^0}} \right]^y}{\left[ {{M^1}{L^{ - 1}}{T^0}} \right]^z}\]
\[\left[ {{M^0}{L^0}{T^{ - 1}}} \right] = \left[ {{M^x}{L^x}{T^{ - 2x}}} \right]\left[ {{M^0}{L^y}{T^0}} \right]\left[ {{M^z}{L^{ - z}}{T^0}} \right]\]
On simplifying, we get
\[\left[ {{M^0}{L^0}{T^{ - 1}}} \right] = \left[ {{M^{x + z}}{L^{x + y - z}}{T^{ - 2x}}} \right]\]
Comparing the exponents of similar dimensions, we get
\[x + z = 0\] ………..(2)
\[x + y - z = 0\] ………...(3)
And
\[ - 2x = - 1\] …………..(4)
From (4), we get \[x = \dfrac{1}{2}\]
Putting this in (2)
\[\dfrac{1}{2} + z = 0\]
\[z = - \dfrac{1}{2}\]
Putting the values of \[x,z\] in (3)
\[\dfrac{1}{2} + y - \left( { - \dfrac{1}{2}} \right) = 0\]
\[y + 1 = 0\]
Finally, \[y = - 1\]
\[\therefore x = \dfrac{1}{2}, y = - 1,z = - \dfrac{1}{2}\]
Putting these values in (1)
\[f = c({F^{\dfrac{1}{2}}}{l^{ - 1}}{\mu ^{ - \dfrac{1}{2}}})\]
Or, \[f = \dfrac{c}{l}\sqrt {\dfrac{F}{\mu }} \]
Hence, the formula for the frequency is
\[f = \dfrac{c}{l}\sqrt {\dfrac{F}{\mu }} \], where \[c\] is a constant.
Additional Information: The value of the c can be found experimentally. By experiment, it is found that \[c = \dfrac{1}{2}\]. Putting this value in the expression of frequency derived above, the final formula for frequency becomes:
\[f = \dfrac{1}{{2l}}\sqrt {\dfrac{F}{\mu }} \]
The formula derived above is used in finding the set of frequencies, called the normal modes of oscillation. The formula derived above is used to find the effect of increasing or decreasing the tension of a musical instrument on the frequency.
Note: While deriving a formula using dimensional analysis, be careful while writing the dimensions of each quantity. We can use any physical formula of each quantity to find its dimensions. Always prefer to use the formula which relates the quantity with more fundamental quantities.
Complete step-by-step solution
Let the frequency \[f\] be proportional to the tension \[F\] raised to the power \[x\], length \[l\] raised to the power \[y\] and mass per unit length \[\mu \] raised to the power \[z\], i.e.
\[f \propto {F^x}{l^y}{\mu ^z}\]
Removing the proportionality sign with the constant \[c\], we get
\[f = c({F^x}{l^y}{\mu ^z})\] …...(1)
For the above equation to be correct, the dimensions of the quantity in the LHS should be equal to the dimensions of the quantities in the RHS.
Replacing the quantities of the above equation with their dimensions, we get
\[\left[ f \right] = \left[ {{M^0}{L^0}{T^{ - 1}}} \right]\], \[\left[ F \right] = \left[ {{M^1}{L^1}{T^{ - 2}}} \right]\], \[\left[ l \right] = \left[ {{M^0}{L^1}{T^0}} \right]\]and \[\left[ \mu \right] = \left[ {{M^1}{L^{ - 1}}{T^0}} \right]\]
\[\because c\] is a constant, so it has no dimensions.
Substituting these in (1) we get
\[\left[ {{M^0}{L^0}{T^{ - 1}}} \right] = {\left[ {{M^1}{L^1}{T^{ - 2}}} \right]^x}{\left[ {{M^0}{L^1}{T^0}} \right]^y}{\left[ {{M^1}{L^{ - 1}}{T^0}} \right]^z}\]
\[\left[ {{M^0}{L^0}{T^{ - 1}}} \right] = \left[ {{M^x}{L^x}{T^{ - 2x}}} \right]\left[ {{M^0}{L^y}{T^0}} \right]\left[ {{M^z}{L^{ - z}}{T^0}} \right]\]
On simplifying, we get
\[\left[ {{M^0}{L^0}{T^{ - 1}}} \right] = \left[ {{M^{x + z}}{L^{x + y - z}}{T^{ - 2x}}} \right]\]
Comparing the exponents of similar dimensions, we get
\[x + z = 0\] ………..(2)
\[x + y - z = 0\] ………...(3)
And
\[ - 2x = - 1\] …………..(4)
From (4), we get \[x = \dfrac{1}{2}\]
Putting this in (2)
\[\dfrac{1}{2} + z = 0\]
\[z = - \dfrac{1}{2}\]
Putting the values of \[x,z\] in (3)
\[\dfrac{1}{2} + y - \left( { - \dfrac{1}{2}} \right) = 0\]
\[y + 1 = 0\]
Finally, \[y = - 1\]
\[\therefore x = \dfrac{1}{2}, y = - 1,z = - \dfrac{1}{2}\]
Putting these values in (1)
\[f = c({F^{\dfrac{1}{2}}}{l^{ - 1}}{\mu ^{ - \dfrac{1}{2}}})\]
Or, \[f = \dfrac{c}{l}\sqrt {\dfrac{F}{\mu }} \]
Hence, the formula for the frequency is
\[f = \dfrac{c}{l}\sqrt {\dfrac{F}{\mu }} \], where \[c\] is a constant.
Additional Information: The value of the c can be found experimentally. By experiment, it is found that \[c = \dfrac{1}{2}\]. Putting this value in the expression of frequency derived above, the final formula for frequency becomes:
\[f = \dfrac{1}{{2l}}\sqrt {\dfrac{F}{\mu }} \]
The formula derived above is used in finding the set of frequencies, called the normal modes of oscillation. The formula derived above is used to find the effect of increasing or decreasing the tension of a musical instrument on the frequency.
Note: While deriving a formula using dimensional analysis, be careful while writing the dimensions of each quantity. We can use any physical formula of each quantity to find its dimensions. Always prefer to use the formula which relates the quantity with more fundamental quantities.
Recently Updated Pages
JEE Main 2025 Session 2 Form Correction (Closed) – What Can Be Edited

Sign up for JEE Main 2025 Live Classes - Vedantu

JEE Main Books 2023-24: Best JEE Main Books for Physics, Chemistry and Maths

JEE Main 2023 April 13 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 11 Shift 2 Question Paper with Answer Key

JEE Main 2023 April 10 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Class 11 JEE Main Physics Mock Test 2025

Current Loop as Magnetic Dipole and Its Derivation for JEE

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units and Measurements Class 11 Notes: CBSE Physics Chapter 1

Important Questions for CBSE Class 11 Physics Chapter 1 - Units and Measurement

NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line

Motion In A Plane: Line Class 11 Notes: CBSE Physics Chapter 3

Waves Class 11 Notes: CBSE Physics Chapter 14
