Answer
Verified
112.8k+ views
Hint A vibration in a string is a wave. Resonance causes a vibrating string to produce a sound with constant frequency, i.e. constant pitch. If the length or tension of the string is correctly adjusted, the sound produced is a musical tone. Vibrating strings are the basis of string instruments such as guitars, cellos, and pianos.
Complete step by step answer:
1. The lowest resonant frequency of a vibrating object is called its fundamental frequency. Most vibrating objects have more than one resonant frequency and those used in musical instruments typically vibrate at harmonics of the fundamental. A harmonic is defined as an integer (whole number) multiple of the fundamental frequency. Vibrating strings, open cylindrical air columns, and conical air columns will vibrate at all harmonics of the fundamental. Cylinders with one end closed will vibrate with only odd harmonics of the fundamental. Vibrating membranes typically produce vibrations at harmonics, but also have some resonant frequencies which are not harmonics. It is for this class of vibrators that the term overtone becomes useful - they are said to have some non-harmonic overtones.
2, The nth harmonic = n $\times$ the fundamental frequency. 5th harmonic refers to 5f.
Here, n=5. So, the 5th harmonic will be 5f.
3. The frequency has increased to 5 times, while the velocity of the wave remains the same. Thus wavelength will decrease by 5 fold.
The correct option is (b)
Note The shorter the string, the higher the frequency of the fundamental. The higher the tension, the higher the frequency of the fundamental. The lighter the string, the higher the frequency of the fundamental.
Complete step by step answer:
1. The lowest resonant frequency of a vibrating object is called its fundamental frequency. Most vibrating objects have more than one resonant frequency and those used in musical instruments typically vibrate at harmonics of the fundamental. A harmonic is defined as an integer (whole number) multiple of the fundamental frequency. Vibrating strings, open cylindrical air columns, and conical air columns will vibrate at all harmonics of the fundamental. Cylinders with one end closed will vibrate with only odd harmonics of the fundamental. Vibrating membranes typically produce vibrations at harmonics, but also have some resonant frequencies which are not harmonics. It is for this class of vibrators that the term overtone becomes useful - they are said to have some non-harmonic overtones.
2, The nth harmonic = n $\times$ the fundamental frequency. 5th harmonic refers to 5f.
Here, n=5. So, the 5th harmonic will be 5f.
3. The frequency has increased to 5 times, while the velocity of the wave remains the same. Thus wavelength will decrease by 5 fold.
The correct option is (b)
Note The shorter the string, the higher the frequency of the fundamental. The higher the tension, the higher the frequency of the fundamental. The lighter the string, the higher the frequency of the fundamental.
Recently Updated Pages
Uniform Acceleration - Definition, Equation, Examples, and FAQs
JEE Main 2021 July 25 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 20 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key
JEE Main 2023 (January 30th Shift 1) Physics Question Paper with Answer Key
Trending doubts
JEE Main 2025: Application Form (Out), Exam Dates (Released), Eligibility & More
JEE Main Chemistry Question Paper with Answer Keys and Solutions
Class 11 JEE Main Physics Mock Test 2025
Angle of Deviation in Prism - Important Formula with Solved Problems for JEE
Average and RMS Value for JEE Main
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
Other Pages
NCERT Solutions for Class 11 Physics Chapter 7 Gravitation
NCERT Solutions for Class 11 Physics Chapter 9 Mechanical Properties of Fluids
Units and Measurements Class 11 Notes - CBSE Physics Chapter 1
NCERT Solutions for Class 11 Physics Chapter 5 Work Energy and Power
NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements
NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line