The graph between the time period and the length of the simple pendulum is a ____________.
A) straight line
B) curve
C) ellipse
D) parabola
Answer
Verified
120.6k+ views
Hint: The time period of a simple pendulum refers to the time taken to complete one oscillation by the bob. It depends only on the length of the pendulum and is found to be proportional to the square root of the length of the pendulum.
Formula Used:
The time period of a simple pendulum of length $L$ is given by, $T = 2\pi \sqrt {\dfrac{L}{g}} $ where $g$ is the acceleration due to gravity.
Complete step by step answer:
Step 1: Describe how the time period of the simple pendulum varies with its length.
A simple pendulum constitutes a bob attached to one end of an inextensible string of negligible mass and length $L$ with its other end fixed to a horizontal surface. The suspended bob is allowed to oscillate freely under the influence of gravity.
The time period of a simple pendulum is given by, $T = 2\pi \sqrt {\dfrac{L}{g}} $ ------- (1)
where $L$ is the length of the simple pendulum and $g$ is the acceleration due to gravity.
Equation (1) can also be expressed as, $T = \dfrac{{2\pi }}{{\sqrt g }}\sqrt L $
On squaring both sides we get, ${T^2} = \dfrac{{4\pi }}{g}L$ ------- (2)
Here, the acceleration due to gravity $g$ is constant. The only varying parameter is the length $L$ of the simple pendulum.
So, the equation (2) can be expressed as ${T^2} = kL$ where $k$ is a constant and $k = \dfrac{{4\pi }}{g}$
The equation ${T^2} = kL$ is similar to the equation of a parabola in the first quadrant given by, ${y^2} = 4a{x}$ where $a$ is a constant.
Therefore, the graph between the time period and length of a simple pendulum must be a parabola as shown below:
$\therefore$ The correct option is D.
Note: One oscillation of the simple pendulum corresponds to one complete to and fro motion of the bob. The bob, initially at rest, is raised to the left to induce oscillation. It will then move to the extreme position on the right side and then swing to the left to return to its starting point. This constitutes one oscillation. This is repeated. The time period of the pendulum is independent of the amplitude of oscillation. For a constant length, no matter how far the extreme positions of the bob are the period of oscillation remains the same.
Formula Used:
The time period of a simple pendulum of length $L$ is given by, $T = 2\pi \sqrt {\dfrac{L}{g}} $ where $g$ is the acceleration due to gravity.
Complete step by step answer:
Step 1: Describe how the time period of the simple pendulum varies with its length.
A simple pendulum constitutes a bob attached to one end of an inextensible string of negligible mass and length $L$ with its other end fixed to a horizontal surface. The suspended bob is allowed to oscillate freely under the influence of gravity.
The time period of a simple pendulum is given by, $T = 2\pi \sqrt {\dfrac{L}{g}} $ ------- (1)
where $L$ is the length of the simple pendulum and $g$ is the acceleration due to gravity.
Equation (1) can also be expressed as, $T = \dfrac{{2\pi }}{{\sqrt g }}\sqrt L $
On squaring both sides we get, ${T^2} = \dfrac{{4\pi }}{g}L$ ------- (2)
Here, the acceleration due to gravity $g$ is constant. The only varying parameter is the length $L$ of the simple pendulum.
So, the equation (2) can be expressed as ${T^2} = kL$ where $k$ is a constant and $k = \dfrac{{4\pi }}{g}$
The equation ${T^2} = kL$ is similar to the equation of a parabola in the first quadrant given by, ${y^2} = 4a{x}$ where $a$ is a constant.
Therefore, the graph between the time period and length of a simple pendulum must be a parabola as shown below:
$\therefore$ The correct option is D.
Note: One oscillation of the simple pendulum corresponds to one complete to and fro motion of the bob. The bob, initially at rest, is raised to the left to induce oscillation. It will then move to the extreme position on the right side and then swing to the left to return to its starting point. This constitutes one oscillation. This is repeated. The time period of the pendulum is independent of the amplitude of oscillation. For a constant length, no matter how far the extreme positions of the bob are the period of oscillation remains the same.
Recently Updated Pages
Structure of Atom: Key Models, Subatomic Particles, and Quantum Numbers
Difference Between Circuit Switching and Packet Switching
Difference Between Mass and Weight
JEE Main Participating Colleges 2024 - A Complete List of Top Colleges
JEE Main Maths Paper Pattern 2025 – Marking, Sections & Tips
Sign up for JEE Main 2025 Live Classes - Vedantu
Trending doubts
JEE Mains 2025: Check Important Dates, Syllabus, Exam Pattern, Fee and Updates
JEE Main Login 2045: Step-by-Step Instructions and Details
JEE Main Chemistry Question Paper with Answer Keys and Solutions
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking
JEE Main 2023 January 24 Shift 2 Question Paper with Answer Keys & Solutions
JEE Main Chemistry Exam Pattern 2025
Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs
NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements
NCERT Solutions for Class 11 Physics Chapter 9 Mechanical Properties of Fluids
Units and Measurements Class 11 Notes - CBSE Physics Chapter 1
JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More
NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line