Answer
Verified
113.4k+ views
Hint: Here, we need to recall the term SHM. A simple harmonic motion is a good example of periodic motion. In simple harmonic motion, a particle will be accelerated towards a fixed point and the acceleration of the particle is proportional to the magnitude of the displacement of the particle.
Complete step by step solution:
Image: Variation of displacement of a particle executing SHM with time.
The displacement versus time graph of a simple harmonic motion is represented as shown in the figure. Here the time periods are given as \[\dfrac{T}{4}\],\[\dfrac{T}{2}\],\[\dfrac{{3T}}{4}\] and T. If we consider the first option, at \[\dfrac{T}{4}\] the force acting on the particle is zero. If we see the position of the particle at the time interval \[\dfrac{T}{4}\] is nothing but extreme.
At an extreme position, we cannot say that force becomes zero. We know that at an extreme position the acceleration becomes maximum. Similarly, the second and third options are not correct.
If we consider the fourth option, at one point\[\dfrac{T}{2}\], the potential energy is in terms of total energy. This is correct because, at this particular point, the particle is in an extreme position, that is it is having a displacement -A with this displacement whatever the velocity means it becomes zero.
So once the velocity becomes zero, kinetic energy also becomes zero, then total energy must be exhibited in some other form, that is nothing but potential energy. Therefore, at time \[\dfrac{T}{2}\] the potential energy is in terms of total energy.
Hence, option D is the correct answer.
Note: Here, in this problem it is important to remember that, when the energy of a particle is converted into potential energy and kinetic energy or at which time period it will be converted and also about the simple harmonic motion.
Complete step by step solution:
Image: Variation of displacement of a particle executing SHM with time.
The displacement versus time graph of a simple harmonic motion is represented as shown in the figure. Here the time periods are given as \[\dfrac{T}{4}\],\[\dfrac{T}{2}\],\[\dfrac{{3T}}{4}\] and T. If we consider the first option, at \[\dfrac{T}{4}\] the force acting on the particle is zero. If we see the position of the particle at the time interval \[\dfrac{T}{4}\] is nothing but extreme.
At an extreme position, we cannot say that force becomes zero. We know that at an extreme position the acceleration becomes maximum. Similarly, the second and third options are not correct.
If we consider the fourth option, at one point\[\dfrac{T}{2}\], the potential energy is in terms of total energy. This is correct because, at this particular point, the particle is in an extreme position, that is it is having a displacement -A with this displacement whatever the velocity means it becomes zero.
So once the velocity becomes zero, kinetic energy also becomes zero, then total energy must be exhibited in some other form, that is nothing but potential energy. Therefore, at time \[\dfrac{T}{2}\] the potential energy is in terms of total energy.
Hence, option D is the correct answer.
Note: Here, in this problem it is important to remember that, when the energy of a particle is converted into potential energy and kinetic energy or at which time period it will be converted and also about the simple harmonic motion.
Recently Updated Pages
Updated JEE Main Syllabus 2025 - Subject-wise Syllabus and More
JEE Main 2025 Exam Date: Check Important Dates and Schedule
JEE Main Admit Card 2025 Release Date and Time with Steps to Download
JEE Main 2025 City Intimation Slip: Downloading Link and Exam Centres
Uniform Acceleration - Definition, Equation, Examples, and FAQs
JEE Main 2021 July 25 Shift 2 Question Paper with Answer Key
Trending doubts
JEE Main 2025: Application Form (Out), Exam Dates (Released), Eligibility & More
JEE Main Chemistry Question Paper with Answer Keys and Solutions
Class 11 JEE Main Physics Mock Test 2025
Angle of Deviation in Prism - Important Formula with Solved Problems for JEE
Average and RMS Value for JEE Main
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
Other Pages
NCERT Solutions for Class 11 Physics Chapter 7 Gravitation
NCERT Solutions for Class 11 Physics Chapter 9 Mechanical Properties of Fluids
Units and Measurements Class 11 Notes - CBSE Physics Chapter 1
NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements
NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line
Laws of Motion Class 11 Notes CBSE Physics Chapter 4 (Free PDF Download)