
What will be the half-life of a first order reaction for which the value of rate constant is ${\text{200 }}{{\text{s}}^{ - 1}}$?
A. $3.46{\text{ }} \times {\text{ 1}}{{\text{0}}^{ - 2}}{\text{ s}}$
B. $3.46{\text{ }} \times {\text{ 1}}{{\text{0}}^{ - 3}}{\text{ s}}$
C. ${\text{4}}{\text{.26 }} \times {\text{ 1}}{{\text{0}}^{ - 2}}{\text{ s}}$
D. ${\text{4}}{\text{.26 }} \times {\text{ 1}}{{\text{0}}^{ - 3}}{\text{ s}}$
Answer
143.1k+ views
Hint: At half-life period, the concentration of the reactant would be exactly half of the initial amount present. We can determine the half-life period if we put this value in the rate law expression.
Complete step by step answer:
Rate law states that $\text{k = }\frac{\text{2}\text{.303}}{\text{t}}\text{ log }\frac{\text{a}}{\text{a-x}}$
Where, t = time taken for reaction
a = initial concentration of the reactant
a-x = final concentration
Half life of reaction is the time required for the concentration of the reactant to reach exact half of the initial amount present. So, at this time the concentration of the reactant would be ${}^{\text{a}}/{}_{\text{2}}$ and the time would be ${{\text{t}}_{{}^{\text{1}}/{}_{\text{2}}}}$.
So, if we put these values in the rate law expression we get,
\[\text{k = }\frac{\text{2}\text{.303}}{{{\text{t}}_{{}^{1}/{}_{2}}}}\text{ log }\frac{\text{a}}{{}^{\text{a}}/{}_{\text{2}}}\]
\[\text{ = }\frac{\text{2}\text{.303}}{{{\text{t}}_{{}^{1}/{}_{2}}}}\text{ log 2}\]
\[\text{k = }\frac{0.693}{{{\text{t}}_{{}^{\text{1}}/{}_{\text{2}}}}}\] \[\therefore \text{ }{{\text{t}}_{{}^{\text{1}}/{}_{\text{2}}}}\text{ = }\frac{0.693}{\text{k}}\]
We have been given that \[\text{ k = 200 }{{\text{s}}^{-1}}\]. Substituting this value in above expression we get,
\[\text{ }{{\text{t}}_{{}^{\text{1}}/{}_{\text{2}}}}\text{ = }\frac{0.693}{200}\] \[\text{ = 3}\text{.46 }\times \text{ 1}{{\text{0}}^{-3}}\text{ s}\]
Hence, option B is correct.
Additional information: The rate of reaction or reaction rate is the speed at which reactants are converted into products. Different factors such as concentration of reactant and product, pressure, temperature, solvent, presence of catalyst and order of reaction have a drastic effect on the rate of reaction.
The power dependence of rate on the concentration of all reactants is called the order of the reaction. When the rate of the reactions depends on the concentration of only one reactant the order of reaction is 1.
Note:
The formula of half life used here i.e. ${{\text{t}}_{{}^{\text{1}}/{}_{\text{2}}}}\text{ = }\frac{0.693}{\text{k}}$. is applicable only to first order reactions and not reactions of second, third or zero order.
Complete step by step answer:
Rate law states that $\text{k = }\frac{\text{2}\text{.303}}{\text{t}}\text{ log }\frac{\text{a}}{\text{a-x}}$
Where, t = time taken for reaction
a = initial concentration of the reactant
a-x = final concentration
Half life of reaction is the time required for the concentration of the reactant to reach exact half of the initial amount present. So, at this time the concentration of the reactant would be ${}^{\text{a}}/{}_{\text{2}}$ and the time would be ${{\text{t}}_{{}^{\text{1}}/{}_{\text{2}}}}$.
So, if we put these values in the rate law expression we get,
\[\text{k = }\frac{\text{2}\text{.303}}{{{\text{t}}_{{}^{1}/{}_{2}}}}\text{ log }\frac{\text{a}}{{}^{\text{a}}/{}_{\text{2}}}\]
\[\text{ = }\frac{\text{2}\text{.303}}{{{\text{t}}_{{}^{1}/{}_{2}}}}\text{ log 2}\]
\[\text{k = }\frac{0.693}{{{\text{t}}_{{}^{\text{1}}/{}_{\text{2}}}}}\] \[\therefore \text{ }{{\text{t}}_{{}^{\text{1}}/{}_{\text{2}}}}\text{ = }\frac{0.693}{\text{k}}\]
We have been given that \[\text{ k = 200 }{{\text{s}}^{-1}}\]. Substituting this value in above expression we get,
\[\text{ }{{\text{t}}_{{}^{\text{1}}/{}_{\text{2}}}}\text{ = }\frac{0.693}{200}\] \[\text{ = 3}\text{.46 }\times \text{ 1}{{\text{0}}^{-3}}\text{ s}\]
Hence, option B is correct.
Additional information: The rate of reaction or reaction rate is the speed at which reactants are converted into products. Different factors such as concentration of reactant and product, pressure, temperature, solvent, presence of catalyst and order of reaction have a drastic effect on the rate of reaction.
The power dependence of rate on the concentration of all reactants is called the order of the reaction. When the rate of the reactions depends on the concentration of only one reactant the order of reaction is 1.
Note:
The formula of half life used here i.e. ${{\text{t}}_{{}^{\text{1}}/{}_{\text{2}}}}\text{ = }\frac{0.693}{\text{k}}$. is applicable only to first order reactions and not reactions of second, third or zero order.
Recently Updated Pages
How to find Oxidation Number - Important Concepts for JEE

How Electromagnetic Waves are Formed - Important Concepts for JEE

Electrical Resistance - Important Concepts and Tips for JEE

Average Atomic Mass - Important Concepts and Tips for JEE

Chemical Equation - Important Concepts and Tips for JEE

Concept of CP and CV of Gas - Important Concepts and Tips for JEE

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Types of Solutions

Degree of Dissociation and Its Formula With Solved Example for JEE

Other Pages
NCERT Solutions for Class 12 Chemistry Chapter 6 Haloalkanes and Haloarenes

NCERT Solutions for Class 12 Chemistry Chapter 2 Electrochemistry

NCERT Solutions for Class 12 Chemistry Chapter 7 Alcohol Phenol and Ether

NCERT Solutions for Class 12 Chemistry Chapter 1 Solutions

Solutions Class 12 Notes: CBSE Chemistry Chapter 1

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs
