
What will be the half-life of a first order reaction for which the value of rate constant is ${\text{200 }}{{\text{s}}^{ - 1}}$?
A. $3.46{\text{ }} \times {\text{ 1}}{{\text{0}}^{ - 2}}{\text{ s}}$
B. $3.46{\text{ }} \times {\text{ 1}}{{\text{0}}^{ - 3}}{\text{ s}}$
C. ${\text{4}}{\text{.26 }} \times {\text{ 1}}{{\text{0}}^{ - 2}}{\text{ s}}$
D. ${\text{4}}{\text{.26 }} \times {\text{ 1}}{{\text{0}}^{ - 3}}{\text{ s}}$
Answer
225.3k+ views
Hint: At half-life period, the concentration of the reactant would be exactly half of the initial amount present. We can determine the half-life period if we put this value in the rate law expression.
Complete step by step answer:
Rate law states that $\text{k = }\frac{\text{2}\text{.303}}{\text{t}}\text{ log }\frac{\text{a}}{\text{a-x}}$
Where, t = time taken for reaction
a = initial concentration of the reactant
a-x = final concentration
Half life of reaction is the time required for the concentration of the reactant to reach exact half of the initial amount present. So, at this time the concentration of the reactant would be ${}^{\text{a}}/{}_{\text{2}}$ and the time would be ${{\text{t}}_{{}^{\text{1}}/{}_{\text{2}}}}$.
So, if we put these values in the rate law expression we get,
\[\text{k = }\frac{\text{2}\text{.303}}{{{\text{t}}_{{}^{1}/{}_{2}}}}\text{ log }\frac{\text{a}}{{}^{\text{a}}/{}_{\text{2}}}\]
\[\text{ = }\frac{\text{2}\text{.303}}{{{\text{t}}_{{}^{1}/{}_{2}}}}\text{ log 2}\]
\[\text{k = }\frac{0.693}{{{\text{t}}_{{}^{\text{1}}/{}_{\text{2}}}}}\] \[\therefore \text{ }{{\text{t}}_{{}^{\text{1}}/{}_{\text{2}}}}\text{ = }\frac{0.693}{\text{k}}\]
We have been given that \[\text{ k = 200 }{{\text{s}}^{-1}}\]. Substituting this value in above expression we get,
\[\text{ }{{\text{t}}_{{}^{\text{1}}/{}_{\text{2}}}}\text{ = }\frac{0.693}{200}\] \[\text{ = 3}\text{.46 }\times \text{ 1}{{\text{0}}^{-3}}\text{ s}\]
Hence, option B is correct.
Additional information: The rate of reaction or reaction rate is the speed at which reactants are converted into products. Different factors such as concentration of reactant and product, pressure, temperature, solvent, presence of catalyst and order of reaction have a drastic effect on the rate of reaction.
The power dependence of rate on the concentration of all reactants is called the order of the reaction. When the rate of the reactions depends on the concentration of only one reactant the order of reaction is 1.
Note:
The formula of half life used here i.e. ${{\text{t}}_{{}^{\text{1}}/{}_{\text{2}}}}\text{ = }\frac{0.693}{\text{k}}$. is applicable only to first order reactions and not reactions of second, third or zero order.
Complete step by step answer:
Rate law states that $\text{k = }\frac{\text{2}\text{.303}}{\text{t}}\text{ log }\frac{\text{a}}{\text{a-x}}$
Where, t = time taken for reaction
a = initial concentration of the reactant
a-x = final concentration
Half life of reaction is the time required for the concentration of the reactant to reach exact half of the initial amount present. So, at this time the concentration of the reactant would be ${}^{\text{a}}/{}_{\text{2}}$ and the time would be ${{\text{t}}_{{}^{\text{1}}/{}_{\text{2}}}}$.
So, if we put these values in the rate law expression we get,
\[\text{k = }\frac{\text{2}\text{.303}}{{{\text{t}}_{{}^{1}/{}_{2}}}}\text{ log }\frac{\text{a}}{{}^{\text{a}}/{}_{\text{2}}}\]
\[\text{ = }\frac{\text{2}\text{.303}}{{{\text{t}}_{{}^{1}/{}_{2}}}}\text{ log 2}\]
\[\text{k = }\frac{0.693}{{{\text{t}}_{{}^{\text{1}}/{}_{\text{2}}}}}\] \[\therefore \text{ }{{\text{t}}_{{}^{\text{1}}/{}_{\text{2}}}}\text{ = }\frac{0.693}{\text{k}}\]
We have been given that \[\text{ k = 200 }{{\text{s}}^{-1}}\]. Substituting this value in above expression we get,
\[\text{ }{{\text{t}}_{{}^{\text{1}}/{}_{\text{2}}}}\text{ = }\frac{0.693}{200}\] \[\text{ = 3}\text{.46 }\times \text{ 1}{{\text{0}}^{-3}}\text{ s}\]
Hence, option B is correct.
Additional information: The rate of reaction or reaction rate is the speed at which reactants are converted into products. Different factors such as concentration of reactant and product, pressure, temperature, solvent, presence of catalyst and order of reaction have a drastic effect on the rate of reaction.
The power dependence of rate on the concentration of all reactants is called the order of the reaction. When the rate of the reactions depends on the concentration of only one reactant the order of reaction is 1.
Note:
The formula of half life used here i.e. ${{\text{t}}_{{}^{\text{1}}/{}_{\text{2}}}}\text{ = }\frac{0.693}{\text{k}}$. is applicable only to first order reactions and not reactions of second, third or zero order.
Recently Updated Pages
JEE Main 2025-26 Mock Test: Organic Compounds Containing Nitrogen

JEE Main 2025-26 Organic Compounds Containing Nitrogen Mock Test

JEE Main Chemical Kinetics Mock Test 2025-26: Free Practice Online

JEE Main 2025-26 Organic Compounds Containing Oxygen Mock Test

JEE Main 2025-26 Organic Compounds Containing Halogens Mock Test

Sodium acetate on heating with soda lime produce A class 12 chemistry JEE_Main

Trending doubts
JEE Main 2026: City Intimation Slip and Exam Dates Released, Application Form Closed, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Other Pages
NCERT Solutions For Class 12 Chemistry Chapter 1 Solutions - 2025-26

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Solutions Class 12 Chemistry Chapter 1 CBSE Notes - 2025-26

NCERT Solutions ForClass 12 Chemistry Chapter Chapter 4 The D and F Block Elements

Biomolecules Class 12 Chemistry Chapter 10 CBSE Notes - 2025-26

NCERT Solutions For Class 12 Chemistry Chapter 10 Biomolecules - 2025-26

