
What will be the half-life of a first order reaction for which the value of rate constant is ${\text{200 }}{{\text{s}}^{ - 1}}$?
A. $3.46{\text{ }} \times {\text{ 1}}{{\text{0}}^{ - 2}}{\text{ s}}$
B. $3.46{\text{ }} \times {\text{ 1}}{{\text{0}}^{ - 3}}{\text{ s}}$
C. ${\text{4}}{\text{.26 }} \times {\text{ 1}}{{\text{0}}^{ - 2}}{\text{ s}}$
D. ${\text{4}}{\text{.26 }} \times {\text{ 1}}{{\text{0}}^{ - 3}}{\text{ s}}$
Answer
232.8k+ views
Hint: At half-life period, the concentration of the reactant would be exactly half of the initial amount present. We can determine the half-life period if we put this value in the rate law expression.
Complete step by step answer:
Rate law states that $\text{k = }\frac{\text{2}\text{.303}}{\text{t}}\text{ log }\frac{\text{a}}{\text{a-x}}$
Where, t = time taken for reaction
a = initial concentration of the reactant
a-x = final concentration
Half life of reaction is the time required for the concentration of the reactant to reach exact half of the initial amount present. So, at this time the concentration of the reactant would be ${}^{\text{a}}/{}_{\text{2}}$ and the time would be ${{\text{t}}_{{}^{\text{1}}/{}_{\text{2}}}}$.
So, if we put these values in the rate law expression we get,
\[\text{k = }\frac{\text{2}\text{.303}}{{{\text{t}}_{{}^{1}/{}_{2}}}}\text{ log }\frac{\text{a}}{{}^{\text{a}}/{}_{\text{2}}}\]
\[\text{ = }\frac{\text{2}\text{.303}}{{{\text{t}}_{{}^{1}/{}_{2}}}}\text{ log 2}\]
\[\text{k = }\frac{0.693}{{{\text{t}}_{{}^{\text{1}}/{}_{\text{2}}}}}\] \[\therefore \text{ }{{\text{t}}_{{}^{\text{1}}/{}_{\text{2}}}}\text{ = }\frac{0.693}{\text{k}}\]
We have been given that \[\text{ k = 200 }{{\text{s}}^{-1}}\]. Substituting this value in above expression we get,
\[\text{ }{{\text{t}}_{{}^{\text{1}}/{}_{\text{2}}}}\text{ = }\frac{0.693}{200}\] \[\text{ = 3}\text{.46 }\times \text{ 1}{{\text{0}}^{-3}}\text{ s}\]
Hence, option B is correct.
Additional information: The rate of reaction or reaction rate is the speed at which reactants are converted into products. Different factors such as concentration of reactant and product, pressure, temperature, solvent, presence of catalyst and order of reaction have a drastic effect on the rate of reaction.
The power dependence of rate on the concentration of all reactants is called the order of the reaction. When the rate of the reactions depends on the concentration of only one reactant the order of reaction is 1.
Note:
The formula of half life used here i.e. ${{\text{t}}_{{}^{\text{1}}/{}_{\text{2}}}}\text{ = }\frac{0.693}{\text{k}}$. is applicable only to first order reactions and not reactions of second, third or zero order.
Complete step by step answer:
Rate law states that $\text{k = }\frac{\text{2}\text{.303}}{\text{t}}\text{ log }\frac{\text{a}}{\text{a-x}}$
Where, t = time taken for reaction
a = initial concentration of the reactant
a-x = final concentration
Half life of reaction is the time required for the concentration of the reactant to reach exact half of the initial amount present. So, at this time the concentration of the reactant would be ${}^{\text{a}}/{}_{\text{2}}$ and the time would be ${{\text{t}}_{{}^{\text{1}}/{}_{\text{2}}}}$.
So, if we put these values in the rate law expression we get,
\[\text{k = }\frac{\text{2}\text{.303}}{{{\text{t}}_{{}^{1}/{}_{2}}}}\text{ log }\frac{\text{a}}{{}^{\text{a}}/{}_{\text{2}}}\]
\[\text{ = }\frac{\text{2}\text{.303}}{{{\text{t}}_{{}^{1}/{}_{2}}}}\text{ log 2}\]
\[\text{k = }\frac{0.693}{{{\text{t}}_{{}^{\text{1}}/{}_{\text{2}}}}}\] \[\therefore \text{ }{{\text{t}}_{{}^{\text{1}}/{}_{\text{2}}}}\text{ = }\frac{0.693}{\text{k}}\]
We have been given that \[\text{ k = 200 }{{\text{s}}^{-1}}\]. Substituting this value in above expression we get,
\[\text{ }{{\text{t}}_{{}^{\text{1}}/{}_{\text{2}}}}\text{ = }\frac{0.693}{200}\] \[\text{ = 3}\text{.46 }\times \text{ 1}{{\text{0}}^{-3}}\text{ s}\]
Hence, option B is correct.
Additional information: The rate of reaction or reaction rate is the speed at which reactants are converted into products. Different factors such as concentration of reactant and product, pressure, temperature, solvent, presence of catalyst and order of reaction have a drastic effect on the rate of reaction.
The power dependence of rate on the concentration of all reactants is called the order of the reaction. When the rate of the reactions depends on the concentration of only one reactant the order of reaction is 1.
Note:
The formula of half life used here i.e. ${{\text{t}}_{{}^{\text{1}}/{}_{\text{2}}}}\text{ = }\frac{0.693}{\text{k}}$. is applicable only to first order reactions and not reactions of second, third or zero order.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding the Electric Field of a Uniformly Charged Ring

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 12 Chemistry Chapter 1 Solutions (2025-26)

Solutions Class 12 Chemistry Chapter 1 CBSE Notes - 2025-26

NCERT Solutions For Class 12 Chemistry Chapter 4 The d and f Block Elements (2025-26)

Biomolecules Class 12 Chemistry Chapter 10 CBSE Notes - 2025-26

NCERT Solutions For Class 12 Chemistry Chapter 10 Biomolecules (2025-26)

