Answer
Verified
109.2k+ views
Hint: We will use the formula for radioactive decay and calculate the ratio of remaining activity to original activity.
\[N(t) = \dfrac{{{N_o}}}{{{2^n}}}\]
Where,
\[N(t)\] = Remaining Activity at time =t seconds
\[{N_o}\] = Initial Activity at \[t = 0\] s
n = Total number of half-lives.
Then, we will compare our value with that given in the question to calculate the value of x.
Complete step by step solution
We will use the formula for radioactive decay: -
\[N(t) = \dfrac{{{N_o}}}{{{2^n}}}\] . . . (1)
Where,
\[N(t)\] = Remaining Activity at time =t seconds
\[{N_o}\] = Initial Activity at \[t = 0\] s
n = Total number of half-lives.
\[n = \dfrac{{total\,time}}{{time\,for\,one\,half - life}}\]
We will now put the values as given in the question into the above formula: -
\[n = \dfrac{{40hours}}{{20hours}}\]
\[n = 2\] . . . (2)
The question says that the ratio of remaining activity to the original activity is \[\left( {\dfrac{1}{x}} \right)\] .
Thus,
\[\dfrac{{N(t)}}{{{N_o}}} = \dfrac{1}{x}\]
\[N(t) = \dfrac{{{N_o}}}{x}\]
Comparing it with equation (1) we can write: -
\[{2^n} = x\]
Substituting the value of n from eq-(2)
\[{2^2} = x\]
\[ \Rightarrow x = 4\]
Hence, the value of x is equal to 4.
Note
There is an alternate formula for radioactive decay that can be used to do this question.
\[N = {N_\circ }{e^{ - \lambda t}}\]
Where,
N = remaining activity
\[{N_\circ }\] = Original activity
\[\lambda = \] decay constant
E = euler’s constant = 2.74
t = total time
Also, time for half life \[ = \dfrac{{\ln 2}}{\lambda } = \dfrac{{0.693}}{\lambda }\]
Now, using the above equation we can calculate \[\lambda \] .
\[\lambda \] = 0.693 /time for half-life
\[\lambda = \dfrac{{0.693}}{{20}}\] (time for half-life= 20h)
\[\lambda \]= 0.03465
Now,
\[N = {N_\circ }{e^{ - 0.03465 \times 40}}\] (for time = 40h)
\[\dfrac{N}{{{N_\circ }}} = {e^{ - 1.386}}\]
\[\dfrac{N}{{{N_\circ }}} = \dfrac{1}{{{e^{1.386}}}} = \dfrac{1}{{4.043}}\]
Comparing this with, \[\dfrac{{N(t)}}{{{N_o}}} = \dfrac{1}{x}\] , we get: -
\[ \Rightarrow x = 4.043\]
This method gives an approximate value and also involves much greater calculation. It gives approximate value because the values for ‘e’ and ‘ln2’ are not completely accurate. That is why it is recommended to not use this method for objective questions whereas, the solution is completely correct.
\[N(t) = \dfrac{{{N_o}}}{{{2^n}}}\]
Where,
\[N(t)\] = Remaining Activity at time =t seconds
\[{N_o}\] = Initial Activity at \[t = 0\] s
n = Total number of half-lives.
Then, we will compare our value with that given in the question to calculate the value of x.
Complete step by step solution
We will use the formula for radioactive decay: -
\[N(t) = \dfrac{{{N_o}}}{{{2^n}}}\] . . . (1)
Where,
\[N(t)\] = Remaining Activity at time =t seconds
\[{N_o}\] = Initial Activity at \[t = 0\] s
n = Total number of half-lives.
\[n = \dfrac{{total\,time}}{{time\,for\,one\,half - life}}\]
We will now put the values as given in the question into the above formula: -
\[n = \dfrac{{40hours}}{{20hours}}\]
\[n = 2\] . . . (2)
The question says that the ratio of remaining activity to the original activity is \[\left( {\dfrac{1}{x}} \right)\] .
Thus,
\[\dfrac{{N(t)}}{{{N_o}}} = \dfrac{1}{x}\]
\[N(t) = \dfrac{{{N_o}}}{x}\]
Comparing it with equation (1) we can write: -
\[{2^n} = x\]
Substituting the value of n from eq-(2)
\[{2^2} = x\]
\[ \Rightarrow x = 4\]
Hence, the value of x is equal to 4.
Note
There is an alternate formula for radioactive decay that can be used to do this question.
\[N = {N_\circ }{e^{ - \lambda t}}\]
Where,
N = remaining activity
\[{N_\circ }\] = Original activity
\[\lambda = \] decay constant
E = euler’s constant = 2.74
t = total time
Also, time for half life \[ = \dfrac{{\ln 2}}{\lambda } = \dfrac{{0.693}}{\lambda }\]
Now, using the above equation we can calculate \[\lambda \] .
\[\lambda \] = 0.693 /time for half-life
\[\lambda = \dfrac{{0.693}}{{20}}\] (time for half-life= 20h)
\[\lambda \]= 0.03465
Now,
\[N = {N_\circ }{e^{ - 0.03465 \times 40}}\] (for time = 40h)
\[\dfrac{N}{{{N_\circ }}} = {e^{ - 1.386}}\]
\[\dfrac{N}{{{N_\circ }}} = \dfrac{1}{{{e^{1.386}}}} = \dfrac{1}{{4.043}}\]
Comparing this with, \[\dfrac{{N(t)}}{{{N_o}}} = \dfrac{1}{x}\] , we get: -
\[ \Rightarrow x = 4.043\]
This method gives an approximate value and also involves much greater calculation. It gives approximate value because the values for ‘e’ and ‘ln2’ are not completely accurate. That is why it is recommended to not use this method for objective questions whereas, the solution is completely correct.
Recently Updated Pages
If x2 hx 21 0x2 3hx + 35 0h 0 has a common root then class 10 maths JEE_Main
The radius of a sector is 12 cm and the angle is 120circ class 10 maths JEE_Main
For what value of x function fleft x right x4 4x3 + class 10 maths JEE_Main
What is the area under the curve yx+x1 betweenx0 and class 10 maths JEE_Main
The volume of a sphere is dfrac43pi r3 cubic units class 10 maths JEE_Main
Which of the following is a good conductor of electricity class 10 chemistry JEE_Main