The half-life of the isotope ${ }_{11} \mathrm{Na}^{24}$ is $15 \mathrm{hrs}$. How much time does it take for $\dfrac{7}{8}$ th of a sample of this isotope to decay
A. $75\, \mathrm{hrs}$
B. $65\, \mathrm{hrs}$
C. $55\, \mathrm{hrs}$
D. $45\, \mathrm{hrs}$
Answer
Verified
122.7k+ views
Hint:The Half life of the radioactive sample is the time taken by the sample to reach half of the original sample. In this problem half-life of the element is given and we have to find the time taken for $\dfrac{7}{8}$ th of a sample to decay. Therefore, we can use the direct equation connecting all these factors to find the solution.
Formula used:
We can use the following formula to calculate the time taken for $\dfrac{7}{8} t h$ of a sample to decay:
$\dfrac{N}{N_{0}}=\left(\dfrac{1}{2}\right)^{\dfrac{t}{T}}$
Where $\mathrm{N}$ is the amount of sample remaining after $\mathrm{t}$ time.
$N_{0}$ is the original amount of sample.
$\mathrm{T}$ is the half-life of the isotope.
Complete step by step solution:
Here in this question half-life of the isotope ${ }_{11} N a^{24}$ is given as $15 \mathrm{hrs}$. After time the $\dfrac{7}{8}$ th of the sample is decayed. We have to find the time taken for this decay. To use the given we have to find how much sample is remaining now.
If we consider the amount of original sample present as 1,then
Undecayed sample, $N=1-\dfrac{7}{8}=\dfrac{1}{8}$
And $\mathrm{T}=15 \mathrm{hrs}$
Therefore,
$\dfrac{N}{N_{0}}=\left(\dfrac{1}{2}\right)^{\dfrac{t}{T}} \Rightarrow \dfrac{1}{8}=\left(\dfrac{1}{2}\right)^{\dfrac{t}{15}}$
Taking natural logarithm, we get:
$\ln \dfrac{1}{8}=\dfrac{t}{15} \ln \dfrac{1}{2}$
On further solving we get:
$\dfrac{t}{15}=\dfrac{\ln \dfrac{1}{8}}{\ln \dfrac{1}{2}} \\
\Rightarrow \dfrac{t}{15}=3 \\
\therefore t=15 \times 3=45 \text { hours }$
That is, if half-life of a sample is $15 \mathrm{hrs}$, then time taken for $\dfrac{7}{8}$ of the sample to decay is $45 \mathrm{hrs}$.
Therefore, the answer is option D.
Notes: One of the possible mistakes most people make is they consider the amount of sample as $\dfrac{7}{8}$. But actually, $\mathrm{N}$ in the equation stands for the remaining amount of sample. We approximate the original amount of sample to 1 since here fraction is considered. If the amount was given in percentage, we take the original amount as 100.
Formula used:
We can use the following formula to calculate the time taken for $\dfrac{7}{8} t h$ of a sample to decay:
$\dfrac{N}{N_{0}}=\left(\dfrac{1}{2}\right)^{\dfrac{t}{T}}$
Where $\mathrm{N}$ is the amount of sample remaining after $\mathrm{t}$ time.
$N_{0}$ is the original amount of sample.
$\mathrm{T}$ is the half-life of the isotope.
Complete step by step solution:
Here in this question half-life of the isotope ${ }_{11} N a^{24}$ is given as $15 \mathrm{hrs}$. After time the $\dfrac{7}{8}$ th of the sample is decayed. We have to find the time taken for this decay. To use the given we have to find how much sample is remaining now.
If we consider the amount of original sample present as 1,then
Undecayed sample, $N=1-\dfrac{7}{8}=\dfrac{1}{8}$
And $\mathrm{T}=15 \mathrm{hrs}$
Therefore,
$\dfrac{N}{N_{0}}=\left(\dfrac{1}{2}\right)^{\dfrac{t}{T}} \Rightarrow \dfrac{1}{8}=\left(\dfrac{1}{2}\right)^{\dfrac{t}{15}}$
Taking natural logarithm, we get:
$\ln \dfrac{1}{8}=\dfrac{t}{15} \ln \dfrac{1}{2}$
On further solving we get:
$\dfrac{t}{15}=\dfrac{\ln \dfrac{1}{8}}{\ln \dfrac{1}{2}} \\
\Rightarrow \dfrac{t}{15}=3 \\
\therefore t=15 \times 3=45 \text { hours }$
That is, if half-life of a sample is $15 \mathrm{hrs}$, then time taken for $\dfrac{7}{8}$ of the sample to decay is $45 \mathrm{hrs}$.
Therefore, the answer is option D.
Notes: One of the possible mistakes most people make is they consider the amount of sample as $\dfrac{7}{8}$. But actually, $\mathrm{N}$ in the equation stands for the remaining amount of sample. We approximate the original amount of sample to 1 since here fraction is considered. If the amount was given in percentage, we take the original amount as 100.
Recently Updated Pages
Structure of Atom: Key Models, Subatomic Particles, and Quantum Numbers
Young's Double Slit Experiment Step by Step Derivation
Difference Between Circuit Switching and Packet Switching
Difference Between Mass and Weight
JEE Main Participating Colleges 2024 - A Complete List of Top Colleges
JEE Main Maths Paper Pattern 2025 – Marking, Sections & Tips
Trending doubts
JEE Mains 2025: Check Important Dates, Syllabus, Exam Pattern, Fee and Updates
JEE Main Login 2045: Step-by-Step Instructions and Details
JEE Main Chemistry Question Paper with Answer Keys and Solutions
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking
JEE Main 2023 January 24 Shift 2 Question Paper with Answer Keys & Solutions
JEE Main Chemistry Exam Pattern 2025
Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs
JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More
Learn About Angle Of Deviation In Prism: JEE Main Physics 2025
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
Dual Nature of Radiation and Matter Class 12 Notes CBSE Physics Chapter 11 (Free PDF Download)
Electric field due to uniformly charged sphere class 12 physics JEE_Main