
The image formed by convex mirror of focal length $30 \mathrm{cm}$ is the quarter of size of
the object. Then the distance of the object from the mirror is,
A. $30 \mathrm{cm}$
B. $90 \mathrm{cm}$
C. $120 \mathrm{cm}$
D. $60 \mathrm{cm}$
Answer
233.1k+ views
Hint Optics is the part of material science that reviews the conduct and properties of light, incorporating its communications with issues and the development of instruments that utilize or distinguish it. Optics as a rule portrays the conduct of obvious, bright, and infrared light. We must keep this in mind before attempting any such question. To proceed we must put the formula for calculation of focal length and formula for magnification.
Complete step by step answer:
From the given question, we know that, the focal length of the convex mirror is $\mathrm{f}=30 \mathrm{cm}$ and that the magnification of the image is $\text{m}=\dfrac{1}{4}$. We have to calculate the object distance that is denoted by u. According to the sign convention, we know that the measurements along the direction of light are taken as positive and that opposite to the light are taken as negative. Therefore, we derive that the transverse measurement above the principal axis is taken as positive and that below the principal axis is taken as negative. Therefore, $f=+30 \mathrm{cm}$ and $\mathrm{m}=+1 / 4=+0.25$.
Using the formula, $\mathrm{m}=\dfrac{\mathrm{f}}{\mathrm{f}-\mathrm{u}}$
$\Rightarrow \text{mf}-\text{mu}=\text{f}$
$\Rightarrow \text{u}=\dfrac{\text{mf}-\text{f}}{\text{m}}=\dfrac{\text{m}-1}{\text{m}}\text{f}=\dfrac{0.25-1}{0.25}(30)=-90\text{cm}$
The minus sign prevails due to the assumption in direction but because we are looking into magnitudes only.
The correct answer is Option B.
Note: We must keep in mind that in optics, the sign related with the result portrays the direction only but to answer such questions, we only consider magnitudes.
Complete step by step answer:
From the given question, we know that, the focal length of the convex mirror is $\mathrm{f}=30 \mathrm{cm}$ and that the magnification of the image is $\text{m}=\dfrac{1}{4}$. We have to calculate the object distance that is denoted by u. According to the sign convention, we know that the measurements along the direction of light are taken as positive and that opposite to the light are taken as negative. Therefore, we derive that the transverse measurement above the principal axis is taken as positive and that below the principal axis is taken as negative. Therefore, $f=+30 \mathrm{cm}$ and $\mathrm{m}=+1 / 4=+0.25$.
Using the formula, $\mathrm{m}=\dfrac{\mathrm{f}}{\mathrm{f}-\mathrm{u}}$
$\Rightarrow \text{mf}-\text{mu}=\text{f}$
$\Rightarrow \text{u}=\dfrac{\text{mf}-\text{f}}{\text{m}}=\dfrac{\text{m}-1}{\text{m}}\text{f}=\dfrac{0.25-1}{0.25}(30)=-90\text{cm}$
The minus sign prevails due to the assumption in direction but because we are looking into magnitudes only.
The correct answer is Option B.
Note: We must keep in mind that in optics, the sign related with the result portrays the direction only but to answer such questions, we only consider magnitudes.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding Uniform Acceleration in Physics

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Laws of Motion Class 11 Physics Chapter 4 CBSE Notes - 2025-26

Waves Class 11 Physics Chapter 14 CBSE Notes - 2025-26

Mechanical Properties of Fluids Class 11 Physics Chapter 9 CBSE Notes - 2025-26

Thermodynamics Class 11 Physics Chapter 11 CBSE Notes - 2025-26

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

